login
A155161
A Fibonacci convolution triangle: Riordan array (1, x/(1 - x - x^2)). Triangle T(n,k), 0 <= k <= n, read by rows.
15
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 10, 9, 4, 1, 0, 8, 20, 22, 14, 5, 1, 0, 13, 38, 51, 40, 20, 6, 1, 0, 21, 71, 111, 105, 65, 27, 7, 1, 0, 34, 130, 233, 256, 190, 98, 35, 8, 1, 0, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 0, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1
OFFSET
0,8
LINKS
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
FORMULA
T(n, k) given by [0,1,1,-1,0,0,0,...] DELTA [1,0,0,0,...] where DELTA is the operator defined in A084938.
a(n,k) = Sum_{i=0..n-k} M(k,i)*binomial(i,n-i-k), where M(n,k) = n(n+1)(n+2)...(n+k-1)/k!. - Emanuele Munarini, Mar 15 2011
Recurrence: a(n+2,k+1) = a(n+1,k+1) + a(n+1,k) + a(n,k+1). - Emanuele Munarini, Mar 15 2011
G.f.: (1-x-x^2)/(1-x-x^2-x*y). - Philippe Deléham, Feb 08 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n) (n > 0), A052991(n), A155179(n), A155181(n), A155195(n), A155196(n), A155197(n), A155198(n), A155199(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 08 2012
T(n, k) = binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4). - Peter Luschny, May 23 2021
EXAMPLE
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 1;
[4] 0, 3, 5, 3, 1;
[5] 0, 5, 10, 9, 4, 1;
[6] 0, 8, 20, 22, 14, 5, 1;
[7] 0, 13, 38, 51, 40, 20, 6, 1;
[8] 0, 21, 71, 111, 105, 65, 27, 7, 1;
[9] 0, 34, 130, 233, 256, 190, 98, 35, 8, 1.
MAPLE
T := (n, k) -> binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4):
seq(seq(simplify(T(n, k)), k = 0..n), n = 0..11); # Peter Luschny, May 23 2021
# Uses function PMatrix from A357368.
PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
MATHEMATICA
CoefficientList[#, y]& /@ CoefficientList[(1-x-x^2)/(1-x-x^2-x*y)+O[x]^12, x] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
(* Generates the triangle without the leading '1' (rows are rearranged). *)
(* Function RiordanSquare defined in A321620. *)
RiordanSquare[x/(1 - x - x^2), 11] // Flatten (* Peter Luschny, Feb 27 2021 *)
PROG
(Maxima) M(n, k):=pochhammer(n, k)/k!;
create_list(sum(M(k, i)*binomial(i, n-i-k), i, 0, n-k), n, 0, 8, k, 0, n); /* Emanuele Munarini, Mar 15 2011 */
(Haskell)
a155161 n k = a155161_tabl !! n !! k
a155161_row n = a155161_tabl !! n
a155161_tabl = [1] : [0, 1] : f [0] [0, 1] where
f us vs = ws : f vs ws where
ws = zipWith (+) (us ++ [0, 0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
-- Reinhard Zumkeller, Apr 17 2013
CROSSREFS
Row sums are in A215928.
Central terms: T(2*n,n) = A213684(n) for n > 0.
Sequence in context: A285308 A276543 A107424 * A185937 A292086 A065177
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jan 21 2009
STATUS
approved