login
A033469
Denominator of Bernoulli(2n,1/2).
7
1, 12, 240, 1344, 3840, 33792, 5591040, 49152, 16711680, 104595456, 173015040, 289406976, 22900899840, 201326592, 116769423360, 7689065201664, 1095216660480, 51539607552, 65942866278481920, 824633720832, 7438196161904640, 3971435999526912
OFFSET
0,2
COMMENTS
From the von Staudt-Clausen theorem it follows that a(n) can be computed without using Bernoulli polynomials or the 'denominator'-function (see the Sage implementation). - Peter Luschny, Mar 24 2014
REFERENCES
J. R. Philip, The symmetrical Euler-Maclaurin summation formula, Math. Sci., 6, 1981, pp. 35-41.
FORMULA
a(n) = denominator(2*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - Peter Luschny, Jun 29 2012
a(n) = A081294(n) * A002445(n) for n > 0. - Paul Curtz, Apr 17 2013
Apparently, denominators of the fractions with e.g.f. (x/2) / sinh(x/2). - Tom Copeland, Sep 17 2016
MAPLE
with(numtheory); seq(denom(bernoulli(2*n, 1/2)), n=0..20);
MATHEMATICA
Table[ BernoulliB[2*n, 1/2] // Denominator, {n, 0, 18}] (* Jean-François Alcover, Apr 15 2013 *)
a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ x/2 / Sinh[x/2], {x, 0, 2 n}] // Denominator]; (* Michael Somos, Sep 21 2016 *)
PROG
(PARI) a(n)=denominator(subst(bernpol(2*n, x), x, 1/2)); \\ Joerg Arndt, Apr 17 2013
(Sage)
def A033469(n):
if n == 0: return 1
M = map(lambda i: i+1, divisors(2*n))
return 2^(2*n-1)*mul(filter(lambda s: is_prime(s), M))
[A033469(n) for n in (0..21)] # Peter Luschny, Mar 24 2014
CROSSREFS
Cf. A001896.
Sequence in context: A352700 A012351 A189883 * A012544 A009052 A213449
KEYWORD
nonn
EXTENSIONS
More terms from Joerg Arndt, Apr 17 2013
STATUS
approved