login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030200
Expansion of q^(-1/2) * eta(q) * eta(q^11) in powers of q.
5
1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, -1, 0, -1, 0, 0, 0, 0, 2, 1, 0, 2, -1, 0, -1, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 0, 2, 0, 0, 0, 1, -1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, -1, 0, -2, 0, 0, -1, 0, 0, 0, 1, -1, -2, 0, 2, 1, 0, 1, 0, 0, 0, 1, -1, -1, 0, 1, 0, 0, -1, 0, 0, 0, 2, 1, 0, 0, 0, 0
OFFSET
0,24
COMMENTS
Number 52 of the 74 eta-quotients listed in Table I of Martin (1996).
In [Klein and Fricke 1892] on page 586 equation (3) first line left side has A_0 and the right side the power series r^{1/2} (1 - r - r^2 + r^5 + r^7 + ...) which is the g.f. of this sequence. A_0 and the other A_1, A_3, A_9, A_5, A_4 (in a permuted order) correspond to the nonzero 11-sections of the g.f. of this sequence. - Michael Somos, Nov 12 2014
REFERENCES
F. Klein and R. Fricke, Vorlesungen ueber die theorie der elliptischen modulfunctionen, Teubner, Leipzig, 1892, Vol. 2, see p. 586.
H. McKean and V. Moll, Elliptic Curves, Cambridge University Press, 1997, page 203. MR1471703 (98g:14032)
LINKS
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
FORMULA
Euler transform of period 11 sequence [ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, ...]. - Michael Somos, Nov 20 2006
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(11^e) = 1, b(p^e) = (e-1)%3 - 1 if f=0, b(p^e) = e+1 if f=3, b(p^e) = (1 + (-1)^e) / 2 if f=1 where f = number of zeros of x^3 - x^2 - x - 1 modulo p. - Michael Somos, Nov 20 2006
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(11*k)).
a(n) = sum over all solutions to x^2 + x*y + 3*y^2 = 2*n + 1 with odd integer x>0 of (-1)^y. - Michael Somos, Jan 29 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (11 t)) = 11^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
Convolution square is A006571.
EXAMPLE
G.f. = 1 - x - x^2 + x^5 + x^7 - x^11 + x^13 - x^15 - x^16 - x^18 + 2*x^23 + ...
G.f. = q - q^3 - q^5 + q^11 + q^15 - q^23 + q^27 - q^31 - q^33 - q^37 + 2*q^47 +...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^11], {x, 0, n}]; (* Michael Somos, Nov 12 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; qfrep( [1, 0; 0, 11], n)[n] - qfrep( [3, 1; 1, 4], n)[n])}; /* Michael Somos, Nov 20 2006 */
(PARI) {a(n) = my(A, p, e, f); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==11, 1, f = sum( k=0, p-1, (k^3 - k^2 - k - 1)%p == 0); if( f==0, (e-1)%3-1, if( f==1, (1 + (-1)^e) / 2, e+1)))))}; /* Michael Somos, Nov 20 2006 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^11 + A), n))}; /* Michael Somos, Nov 20 2006 */
(Magma) Basis( CuspForms( Gamma1(44), 1), 162) [1]; /* Michael Somos, Nov 13 2014 */
CROSSREFS
Sequence in context: A143540 A291336 A208664 * A287072 A095734 A137269
KEYWORD
sign
STATUS
approved