login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030199
Expansion of x * Product_{k>=1} (1 - x^k) * (1 - x^(23*k)).
14
1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, -1, 1, 1, -1, 0, 0, 0, -1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1
OFFSET
1,59
COMMENTS
Number 40 of the 74 eta-quotients listed in Table I of Martin (1996).
LINKS
H. Darmon, Andrew Wiles's Marvelous Proof, Notices Amer. Math. Soc., 64 (No. 3, March 2017), 209-216. See p. 211 equ. 23
A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Y. Martin and K. Ono, Eta-quotients and elliptic curves, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3169-3176. MR1401749 (97m:11057)
J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc., 40 (No. 4, 2003), 429-440, see p. 434.
FORMULA
Expansion of eta(q) * eta(q^23) in powers of q.
Euler transform of period 23 sequence [ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, ...]. - Michael Somos, May 02 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = -v^3 + 2 *u * v * w + 2 * u * w^2 + u^2 * w. - Michael Somos, May 02 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 * u3 * u6 +2 * u1 * u2 * u3 * u6 - 2 * u1 * u6^3 + 2 * u2^2 * u3 * u6 - u2 * u3^3. - Michael Somos, May 02 2005
a(n) is multiplicative with a(23^e) = 1. Let y = number of zeros of x^3 - x - 1 modulo p, then a(p^e) = (1 + (-1)^e)/2 if y = 1, a(p^e) = e+1 if y = 3, a(p^e) = (e-1)%3 - 1 if y = 0. - Michael Somos, Oct 19 2005
a(8*n + 4) = a(23*n + 5) = a(23*n + 7) = a(23*n + 10) = a(23*n + 11) = a(23*n + 14) = a(23*n + 15) = a(23*n + 19) = a(23*n + 20) = a(23*n + 21) = a(23*n + 22) = 0. - Michael Somos, Oct 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 08 2014
2 * a(n) = A028959(n) - A028930(n). - Michael Somos, Sep 08 2014
EXAMPLE
G.f. = q - q^2 - q^3 + q^6 + q^8 -q ^13 - q^16 + q^23 - q^24 + q^25 + q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^23], {q, 0, n}]; (* Michael Somos, May 17 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^23 + A), n))}; /* Michael Somos, May 02 2005 */
(PARI) {a(n) = my(A, p, e, y); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==23, 1, y = sum( x=1, p-1, (x^3 - x - 1)%p == 0); if( y==1, 1-e%2, y, e+1, (e-1)%3 - 1))))}; /* Michael Somos, Oct 19 2005 */
(PARI) {a(n) = if( n<1, 0, qfrep([2, 1; 1, 12], n, 1)[n] - qfrep([4, 1; 1, 6], n, 1)[n])}; /* Michael Somos, Sep 08 2014 */
(Magma) Basis( CuspForms( Gamma1(23), 1), 82) [1]; /* Michael Somos, Sep 08 2014 */
CROSSREFS
Sequence in context: A165766 A102082 A358434 * A320005 A325414 A216510
KEYWORD
sign,mult
EXTENSIONS
Reference to Martin and Ono added by Chandan Singh Dalawat (dalawat(AT)gmail.com), Jul 23 2010
STATUS
approved