OFFSET
1,3
COMMENTS
A fixed point of the morphism 0->01, 1->21, 2->0. Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 3.079595623491438786010417...,
V = 2.324717957244746025960908...,
W = U + 1 = 4.079595623491438786010417....
Since the morphism 0->01, 1->21, 2->0 is the time reversal of the morphism 0->10, 1->12 2->0, which has fixed point A287104, in particular the incidence matrices of these two morphisms are equal. Thus the algebraic expressions found for U, V and W in A287104 do also apply to the U, V and W above. - Michel Dekking, Sep 15 2019
If n >=2, then u(n) - u(n-1) is in {2,3,4}, v(n) - v(n-1) is in {2,3}, and w(n) - w(n-1) is in {3,4,5}.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Properties of a Ternary Infinite Word, arXiv:2206.01776 [cs.DM], 2022.
James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Complement Avoidance in Binary Words, arXiv:2209.09598 [math.CO], 2022.
MATHEMATICA
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 21 2017
STATUS
approved