login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030201
Expansion of eta(q^3)*eta(q^21).
6
0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0
OFFSET
0,38
COMMENTS
Multiplicative. See A002655 for formula. - Andrew Howroyd, Aug 05 2018
LINKS
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
FORMULA
Expansion of x * Product_{k>=1} (1 - x^(3*k)) * (1 - x^(21*k)). - Seiichi Manyama, Oct 18 2016
a(3*n + 1) = A002655(n), a(3*n) = a(3*n + 2) = 0. - Andrew Howroyd, Aug 05 2018
MATHEMATICA
q QPochhammer[q^3] QPochhammer[q^21] + O[q]^105 // CoefficientList[#, q]& (* Jean-François Alcover, Sep 06 2019 *)
PROG
(PARI) seq(n)={concat([0], Vec(eta(x^3 + O(x*x^n)) * eta(x^21 + O(x*x^n))))} \\ Andrew Howroyd, Aug 05 2018
CROSSREFS
Expansion of eta(q^k)*eta(q^(24 - k)): A030199 (k=1), this sequence (k=3), A030213 (k=5), A030214 (k=7), A030215 (k=9), A030216 (k=10), A030217 (k=11).
Cf. A002655.
Sequence in context: A070536 A318886 A369873 * A349797 A055668 A045839
KEYWORD
sign,mult
STATUS
approved