login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027651
Poly-Bernoulli numbers B_n^(k) with k=-4.
7
1, 16, 146, 1066, 6902, 41506, 237686, 1315666, 7107302, 37712866, 197451926, 1023358066, 5262831302, 26903268226, 136887643766, 693968021266, 3508093140902, 17693879415586, 89084256837206, 447884338361266, 2249284754708102, 11285908565322946, 56587579617416246
OFFSET
0,2
COMMENTS
a(n) is also the number of acyclic orientations of the complete bipartite graph K_{4,n}. - Vincent Pilaud, Sep 16 2020
LINKS
K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5.
Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.
Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
FORMULA
a(n) = 24*5^n -36*4^n +14*3^n -2^n. - Vladeta Jovovic, Nov 14 2003
G.f.: (1+4*x)*(1-x)^2/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)).
E.g.f.: 24*exp(5*x) - 36*exp(4*x) + 14*exp(3*x) - exp(2*x). - G. C. Greubel, Feb 07 2018
MAPLE
a:= (n, k) -> (-1)^n*sum((-1)^j*j!*Stirling2(n, j)/(j+1)^k, j=0..n);
seq(a(n, -4), n=0..30);
MATHEMATICA
Table[24*5^n -36*4^n +14*3^n -2^n, {n, 0, 30}] (* G. C. Greubel, Feb 07 2018 *)
LinearRecurrence[{14, -71, 154, -120}, {1, 16, 146, 1066}, 30] (* Harvey P. Dale, Nov 20 2019 *)
PROG
(Magma) [24*5^n-36*4^n+14*3^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
(PARI) Vec((1+4*x)*((1-x)^2)/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) + O(x^30)) \\ Michel Marcus, Feb 13 2015
(SageMath) [24*5^n -36*4^n +14*3^n -2^n for n in (0..30)] # G. C. Greubel, Aug 02 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved