login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052388
Number of 4 X n binary matrices such that any 2 rows have a common 1, up to column permutations.
1
0, 1, 16, 146, 955, 4905, 20907, 76851, 250530, 739612, 2009177, 5085119, 12109526, 27348478, 58955082, 121956402, 243172488, 469115187, 878387366, 1600751976, 2845918041, 4946262815, 8419256605, 14057377245, 23055913530, 37192403430, 59075703351, 92488040301
OFFSET
0,3
REFERENCES
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n^10 +110*n^9 +5445*n^8 +160050*n^7 +2906463*n^6 +30644250*n^5 +176659055*n^4 +711220750*n^3 +1781493036*n^2 +4034382840*n +4159814400)/1307674368000.
G.f.: -x*(x^10 -5*x^9 +10*x^8 -14*x^7 +21*x^6 -19*x^5 -5*x^4 +21*x^3 -10*x^2 -1)/(x-1)^16. - Colin Barker, Nov 05 2012
MATHEMATICA
CoefficientList[Series[-x*(x^10 -5*x^9 +10*x^8 -14*x^7 +21*x^6 -19*x^5 -5*x^4 +21*x^3 -10*x^2 -1)/(x-1)^16, {x, 0, 50}], x] (* G. C. Greubel, Oct 07 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(-x*(x^10 -5*x^9 +10*x^8 -14*x^7 +21*x^6 -19*x^5 -5*x^4 +21*x^3 -10*x^2 -1)/(x-1)^16)) \\ G. C. Greubel, Oct 07 2017
(Magma) [n*(n+1)*(n+2)*(n+3)*(n+4)*(n^10 +110*n^9 +5445*n^8 +160050*n^7 +2906463*n^6 +30644250*n^5 +176659055*n^4 +711220750*n^3 +1781493036*n^2 +4034382840*n +4159814400)/1307674368000: n in [0..25]]; // G. C. Greubel, Oct 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Mar 11 2000
STATUS
approved