login
A027650
Poly-Bernoulli numbers B_n^(k) with k=-3.
9
1, 8, 46, 230, 1066, 4718, 20266, 85310, 354106, 1455278, 5938186, 24104990, 97478746, 393095438, 1581931306, 6356390270, 25511588986, 102304505198, 409992599626, 1642294397150, 6576150108826, 26325519044558, 105364834103146, 421647614381630, 1687155299822266
OFFSET
0,2
COMMENTS
a(n) is also the number of acyclic orientations of the complete bipartite graph K_{3,n}. - Vincent Pilaud, Sep 15 2020
LINKS
K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5.
Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.
Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
FORMULA
a(n) = 6*4^n - 6*3^n + 2^n. - Vladeta Jovovic, Nov 14 2003
G.f.: (1-x)/((1-2*x)*(1-3*x)*(1-4*x)).
E.g.f.: exp(2*x) - 6*exp(3*x) + 6*exp(4*x). - G. C. Greubel, Aug 02 2022
MAPLE
a:= (n, k) -> (-1)^n*sum((-1)^j*j!*Stirling2(n, j)/(j+1)^k, j=0..n);
seq(a(n, -3), n = 0..30);
MATHEMATICA
Table[6*4^n-6*3^n+2^n, {n, 0, 30}] (* G. C. Greubel, Feb 07 2018 *)
PROG
(Magma) [6*4^n-6*3^n+2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
(PARI) Vec((1-x)/((1-2*x)*(1-3*x)*(1-4*x)) + O(x^30)) \\ Michel Marcus, Feb 13 2015
(SageMath) [2^n -6*3^n +6*4^n for n in (0..30)] # G. C. Greubel, Aug 02 2022
CROSSREFS
First differences of A016269.
Row 3 of array A099594.
Sequence in context: A258593 A134114 A071586 * A172064 A197238 A182542
KEYWORD
nonn,easy
STATUS
approved