OFFSET
0,5
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..521
K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
FORMULA
a(n) = numerator of Sum_{k=0..n} W(n,k)*h(k+1) with W(n,k) = (-1)^(n-k)*k!* Stirling2(n+1,k+1) the Worpitzky numbers and h(n) = Sum_{k=1..n} 1/k^2 the generalized harmonic numbers of order 2. - Peter Luschny, Sep 28 2017
MAPLE
a := n -> numer((-1)^n*add( (-1)^m*m!*Stirling2(n, m)/(m+1)^2, m=0..n)):
seq(a(n), n=0..27);
MATHEMATICA
k=2; Table[Numerator[(-1)^n Sum[(-1)^m m! StirlingS2[n, m]/(m+1)^k, {m, 0, n}]], {n, 0, 27}] (* Michael De Vlieger, Oct 28 2015 *)
PROG
(Magma)
A027643:= func< n, k | Numerator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
[A027643(n, 2): n in [0..30]]; // G. C. Greubel, Aug 02 2022
(SageMath)
def A027643(n, k): return numerator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n, j)/(j+1)^k for j in (0..n)) )
[A027643(n, 2) for n in (0..30)] # G. C. Greubel, Aug 02 2022
CROSSREFS
KEYWORD
sign,frac
AUTHOR
STATUS
approved