login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027625
Numerator of n*(n+5)/((n+2)*(n+3)).
2
0, 1, 7, 4, 6, 25, 11, 14, 52, 21, 25, 88, 34, 39, 133, 50, 56, 187, 69, 76, 250, 91, 99, 322, 116, 125, 403, 144, 154, 493, 175, 186, 592, 209, 221, 700, 246, 259, 817, 286, 300, 943, 329, 344, 1078, 375, 391, 1222
OFFSET
0,3
FORMULA
G.f.: x*(1 + 7*x + 4*x^2 + 3*x^3 + 4*x^4 - x^5 - x^6 - 2*x^7)/(1 - x^3)^3.
a(n) = numerator of n*(n+5)/6. - Altug Alkan, Apr 18 2018
From Peter Bala, Aug 06 2022: (Start)
a(n) is quasi-polynomial in n:
a(3*n) = (1/2)*n*(3*n+5) = A115067(n+1).
a(3*n+1) = (1/2)*(n+2)*(3*n+1) = A095794(n+1).
a(3*n+2) = (1/2)*(3*n+2)*(3*n+7) = A179436(n). (End)
Sum_{n>=1} 1/a(n) = 4*Pi/(15*sqrt(3)) + 87/50. - Amiram Eldar, Aug 11 2022
MATHEMATICA
CoefficientList[Series[x*(1+7*x+4*x^2+3*x^3+4*x^4-x^5-x^6-2*x^7)/(1-x^3)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 04 2014 *)
Numerator[25*Binomial[Range[0, 50]/5 +1, 2]/3] (* G. C. Greubel, Aug 05 2022 *)
PROG
(Magma) [Numerator(n*(n+5)/((n+2)*(n+3))): n in [0..50]]; // Vincenzo Librandi, Mar 04 2014
(PARI) a(n) = numerator(n*(n+5)/6); \\ Altug Alkan, Apr 18 2018
(SageMath) [numerator(n*(n+5)/6) for n in (0..50)] # G. C. Greubel, Aug 05 2022
CROSSREFS
Cf. A027626 (denominator), A095794, A115067, A179436.
Sequence in context: A347909 A085665 A176434 * A160575 A194361 A153586
KEYWORD
nonn,frac,easy
STATUS
approved