login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027622
a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4 + (n+4)^5.
4
1114, 3413, 8476, 18247, 35414, 63529, 107128, 171851, 264562, 393469, 568244, 800143, 1102126, 1488977, 1977424, 2586259, 3336458, 4251301, 5356492, 6680279, 8253574, 10110073, 12286376, 14822107, 17760034, 21146189, 25029988, 29464351, 34505822, 40214689
OFFSET
0,1
FORMULA
From Colin Barker, Dec 05 2016: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
G.f.: (1114-3271*x+4708*x^2-3694*x^3+1522*x^4-259*x^5) / (1-x)^6.
(End)
E.g.f.: (1114 +2299*x +1382*x^2 +324*x^3 +31*x^4 +x^5)*exp(x). - G. C. Greubel, Aug 05 2022
MAPLE
seq( add((n+j)^(j+1), j=0..4), n=0..30); # G. C. Greubel, Aug 05 2022
MATHEMATICA
Table[n +(n+1)^2 +(n+2)^3 +(n+3)^4 +(n+4)^5, {n, 0, 29}] (* Alonso del Arte, Nov 22 2016 *)
Table[ReleaseHold@ Total@ MapIndexed[#1^First@ #2 &, Rest@ FactorList[ Pochhammer[Hold@ n, 5]][[All, 1]]], {n, 0, 29}] (* or *)
CoefficientList[Series[(1114 -3271x +4708x^2 -3694x^3 +1522x^4 -259x^5)/(1-x)^6, {x, 0, 29}], x] (* Michael De Vlieger, Dec 05 2016 *)
Table[Total[Table[(n+k)^(k+1), {k, 0, 4}]], {n, 0, 30}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1114, 3413, 8476, 18247, 35414, 63529}, 30] (* Harvey P. Dale, Aug 04 2022 *)
PROG
(Magma)[n+(n+1)^2+(n+2)^3+(n+3)^4+(n+4)^5: n in [0..30]]; // Vincenzo Librandi, Dec 28 2010
(PARI) Vec((1114-3271*x+4708*x^2-3694*x^3+1522*x^4-259*x^5) / (1-x)^6 + O(x^30)) \\ Colin Barker, Dec 05 2016
(SageMath) [sum((n+j)^(j+1) for j in (0..4)) for n in (0..30)] # G. C. Greubel, Aug 05 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved