login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027628
Expansion of Molien series for 5-dimensional group G_3 acting on Jacobi polynomials of ternary self-dual codes.
3
1, 96, 944, 4057, 11811, 27446, 55066, 99639, 166997, 263836, 397716, 577061, 811159, 1110162, 1485086, 1947811, 2511081, 3188504, 3994552, 4944561, 6054731, 7342126, 8824674, 10521167, 12451261, 14635476, 17095196, 19852669, 22931007, 26354186, 30147046
OFFSET
0,2
REFERENCES
Michio Ozeki (ozeki(AT)sci.kj.yamagata-u.ac.jp), paper in preparation.
FORMULA
G.f.: (1 + 91*x + 474*x^2 + 287*x^3 + 11*x^4) / (1-x)^5.
From Colin Barker, Jan 03 2017: (Start)
a(n) = (2 + 13*n + 33*n^2 + 72*n^3 + 72*n^4) / 2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. (End)
E.g.f.: (2 +190*x +753*x^2 +504*x^3 +72*x^4)*exp(x)/2. - G. C. Greubel, Feb 01 2020
MAPLE
seq( (2 +13*n +33*n^2 +72*n^3 +72*n^4)/2, n=0..40); # G. C. Greubel, Feb 01 2020
MATHEMATICA
CoefficientList[Series[(1 +91x +474x^2 +287x^3 +11x^4)/(1-x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Jan 03 2017 *)
PROG
(PARI) Vec((1+91*x+474*x^2+287*x^3+11*x^4)/(1-x)^5 + O(x^40)) \\ Colin Barker, Jan 03 2017
(Magma) [(2 +13*n +33*n^2 +72*n^3 +72*n^4)/2: n in [0..40]]; // G. C. Greubel, Feb 01 2020
(Sage) [(2 +13*n +33*n^2 +72*n^3 +72*n^4)/2 for n in (0..40)] # G. C. Greubel, Feb 01 2020
CROSSREFS
Sequence in context: A203979 A296960 A202583 * A182684 A232918 A187165
KEYWORD
nonn,easy
STATUS
approved