OFFSET
0,2
REFERENCES
Michio Ozeki (ozeki(AT)sci.kj.yamagata-u.ac.jp), paper in preparation.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: (1 + 91*x + 474*x^2 + 287*x^3 + 11*x^4) / (1-x)^5.
From Colin Barker, Jan 03 2017: (Start)
a(n) = (2 + 13*n + 33*n^2 + 72*n^3 + 72*n^4) / 2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. (End)
E.g.f.: (2 +190*x +753*x^2 +504*x^3 +72*x^4)*exp(x)/2. - G. C. Greubel, Feb 01 2020
MAPLE
seq( (2 +13*n +33*n^2 +72*n^3 +72*n^4)/2, n=0..40); # G. C. Greubel, Feb 01 2020
MATHEMATICA
CoefficientList[Series[(1 +91x +474x^2 +287x^3 +11x^4)/(1-x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Jan 03 2017 *)
PROG
(PARI) Vec((1+91*x+474*x^2+287*x^3+11*x^4)/(1-x)^5 + O(x^40)) \\ Colin Barker, Jan 03 2017
(Magma) [(2 +13*n +33*n^2 +72*n^3 +72*n^4)/2: n in [0..40]]; // G. C. Greubel, Feb 01 2020
(Sage) [(2 +13*n +33*n^2 +72*n^3 +72*n^4)/2 for n in (0..40)] # G. C. Greubel, Feb 01 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved