login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347909
Decimal expansion of Integral_{x=0..1} exp(-x^2) dx.
2
7, 4, 6, 8, 2, 4, 1, 3, 2, 8, 1, 2, 4, 2, 7, 0, 2, 5, 3, 9, 9, 4, 6, 7, 4, 3, 6, 1, 3, 1, 8, 5, 3, 0, 0, 5, 3, 5, 4, 4, 9, 9, 6, 8, 6, 8, 1, 2, 6, 0, 6, 3, 2, 9, 0, 2, 7, 6, 5, 4, 4, 9, 8, 9, 5, 8, 6, 0, 5, 3, 2, 7, 5, 6, 1, 7, 7, 2, 8, 3, 1, 4, 9, 7, 8, 4, 8, 4, 2, 9, 8
OFFSET
0,1
FORMULA
Equals (sqrt(Pi)/2) * erf(1) = (sqrt(Pi)/(2*i)) * erfi(i).
Equals Sum_{k>=0} (-1)^k / ((2*k + 1)*k!). - Ilya Gutkovskiy, Sep 18 2021
EXAMPLE
0.74682413281242702539946743613185300535449968...
MATHEMATICA
RealDigits[(Sqrt[Pi]/2) Erf[1], 10, 91][[1]]
PROG
(PARI) intnum(x=0, 1, exp(-x^2)) \\ Michel Marcus, Sep 18 2021
CROSSREFS
Cf. A019704 (sqrt(Pi)/2 = Integral_{x=0..+oo} exp(-x^2) dx), A002161 (sqrt(Pi) = Integral_{x=-oo..+oo} exp(-x^2) dx).
Cf. A347910 (inverse integrand), A007680.
Sequence in context: A195366 A359104 A185196 * A085665 A176434 A027625
KEYWORD
nonn,easy,cons
AUTHOR
Jianing Song, Sep 18 2021
STATUS
approved