login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027555
Triangle of binomial coefficients C(-n,k).
17
1, 1, -1, 1, -2, 3, 1, -3, 6, -10, 1, -4, 10, -20, 35, 1, -5, 15, -35, 70, -126, 1, -6, 21, -56, 126, -252, 462, 1, -7, 28, -84, 210, -462, 924, -1716, 1, -8, 36, -120, 330, -792, 1716, -3432, 6435, 1, -9, 45, -165, 495, -1287, 3003, -6435, 12870, -24310, 1, -10, 55, -220, 715, -2002, 5005, -11440, 24310, -48620, 92378
OFFSET
0,5
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 164.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 2.
FORMULA
T(n,k) = binomial(-n,k) = (-1)^k*binomial(n+k-1,k). - R. J. Mathar, Feb 06 2015
T(n, k) = (-1)^k * RisingFactorial(n, k) / k!. - Peter Luschny, Nov 24 2023
EXAMPLE
Triangle starts:
1;
1, -1;
1, -2, 3;
1, -3, 6, -10;
1, -4, 10, -20, 35;
1, -5, 15, -35, 70, -126;
...
MAPLE
A027555 := proc(n, k)
(-1)^k*binomial(n+k-1, k) ;
end proc:
seq(seq(A027555(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Feb 06 2015
MATHEMATICA
Flatten[Table[Binomial[-n, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Apr 30 2012 *)
PROG
(PARI) T(n, k)=binomial(-n, k) \\ Charles R Greathouse IV, Feb 06 2017
(Magma) /* As triangle */ [[Binomial(-n, k): k in [0..n]]: n in [0..11]]; // G. C. Greubel, Nov 21 2017
(SageMath)
def T(n, k):
return (-1)^k * rising_factorial(n, k) // factorial(k)
for n in range(9):
print([T(n, k) for k in range(n+1)]) # Peter Luschny, Nov 24 2023
CROSSREFS
For the unsigned triangle see A059481.
Sequence in context: A213744 A213745 A213808 * A059481 A113592 A271702
KEYWORD
sign,tabl,nice,easy
STATUS
approved