login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of binomial coefficients C(-n,k).
17

%I #35 Nov 24 2023 16:12:58

%S 1,1,-1,1,-2,3,1,-3,6,-10,1,-4,10,-20,35,1,-5,15,-35,70,-126,1,-6,21,

%T -56,126,-252,462,1,-7,28,-84,210,-462,924,-1716,1,-8,36,-120,330,

%U -792,1716,-3432,6435,1,-9,45,-165,495,-1287,3003,-6435,12870,-24310,1,-10,55,-220,715,-2002,5005,-11440,24310,-48620,92378

%N Triangle of binomial coefficients C(-n,k).

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 164.

%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 2.

%H T. D. Noe, <a href="/A027555/b027555.txt">Rows n = 0..50 of triangle, flattened</a>

%F T(n,k) = binomial(-n,k) = (-1)^k*binomial(n+k-1,k). - _R. J. Mathar_, Feb 06 2015

%F T(n, k) = (-1)^k * RisingFactorial(n, k) / k!. - _Peter Luschny_, Nov 24 2023

%e Triangle starts:

%e 1;

%e 1, -1;

%e 1, -2, 3;

%e 1, -3, 6, -10;

%e 1, -4, 10, -20, 35;

%e 1, -5, 15, -35, 70, -126;

%e ...

%p A027555 := proc(n,k)

%p (-1)^k*binomial(n+k-1,k) ;

%p end proc:

%p seq(seq(A027555(n,k),k=0..n),n=0..10) ; # _R. J. Mathar_, Feb 06 2015

%t Flatten[Table[Binomial[-n,k],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Apr 30 2012 *)

%o (PARI) T(n,k)=binomial(-n,k) \\ _Charles R Greathouse IV_, Feb 06 2017

%o (Magma) /* As triangle */ [[Binomial(-n, k): k in [0..n]]: n in [0..11]]; // _G. C. Greubel_, Nov 21 2017

%o (SageMath)

%o def T(n,k):

%o return (-1)^k * rising_factorial(n, k) // factorial(k)

%o for n in range(9):

%o print([T(n, k) for k in range(n+1)]) # _Peter Luschny_, Nov 24 2023

%Y For the unsigned triangle see A059481.

%K sign,tabl,nice,easy

%O 0,5

%A _N. J. A. Sloane_, _Olivier Gérard_