login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027557
Number of 3-balanced strings of length n: let d(S)= #(1)'s in S - #(0)'s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=3.
1
1, 2, 4, 8, 14, 26, 44, 78, 130, 224, 370, 626, 1028, 1718, 2810, 4656, 7594, 12506, 20356, 33374, 54242, 88640, 143906, 234594, 380548, 619238, 1003882, 1631312, 2643386, 4291082, 6950852, 11274702, 18258322, 29598560
OFFSET
0,2
FORMULA
a(n) = a(n-1) + 3a(n-2) - 2a(n-3) - 2a(n-4); g.f. (1+x-x^2) / (1-x-x^2)(1-2x^2).
a(n) = 2*A000045(n+3) - 2^floor((n+2)/2) - 2^floor((n+1)/2). - Max Alekseyev, Jun 02 2005
MATHEMATICA
LinearRecurrence[{1, 3, -2, -2}, {1, 2, 4, 8}, 40] (* Harvey P. Dale, Feb 01 2012 *)
PROG
(PARI) a(n) = 2*fibonacci(n+3) - 2^((n+2)\2) - 2^((n+1)\2) /* Max Alekseyev */
CROSSREFS
Sequence in context: A284735 A006777 A036609 * A120545 A130708 A228805
KEYWORD
nonn
STATUS
approved