login
A010348
Base-6 Armstrong or narcissistic numbers (written in base 10).
15
1, 2, 3, 4, 5, 99, 190, 2292, 2293, 2324, 3432, 3433, 6197, 36140, 269458, 391907, 10067135, 2510142206, 2511720147, 3866632806, 3866632807, 3930544834, 4953134588, 5018649129, 6170640875, 124246559501, 4595333541803, 5341093125744, 5341093125745, 19418246235419
OFFSET
1,2
COMMENTS
From M. F. Hasler, Nov 20 2019: (Start)
Like the other single-digit terms, zero would satisfy the definition (n = Sum_{i=1..k} d[i]^k when d[1..k] are the digits of n), but here only positive numbers are considered.
Terms a(n+1) = a(n) + 1 (n = 8, 11, 20, 28) correspond to solutions a(n) ending in a digit 0 in base 6, in which case a(n) + 1 also is a solution. (End)
LINKS
Joseph Myers, Table of n, a(n) for n = 1..30 (the full list of terms, from Winter)
Eric Weisstein's World of Mathematics, Narcissistic Number
D. T. Winter, Table of Armstrong Numbers (latest backup on web.archive.org from Jan. 2010; page no longer available), published not later than Aug. 2003.
PROG
(PARI) select( {is_A010348(n)=n==vecsum([d^#n|d<-n=digits(n, 6)])}, [0..4e5\1]) \\ Note: this yields only terms < 10^6, for illustration of is_A010348(). - M. F. Hasler, Nov 20 2019
CROSSREFS
Cf. A010347 (a(n) written in base 6).
In other bases: A010344 (base 4), A010346 (base 5), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161952 (base 15), A161953 (base 16).
Sequence in context: A334536 A097931 A162225 * A171591 A140432 A240695
KEYWORD
base,fini,full,nonn
EXTENSIONS
Edited by Joseph Myers, Jun 28 2009
STATUS
approved