OFFSET
1,2
COMMENTS
Whenever 14|a(n) (n = 36, 46, 75, 77), then a(n+1) = a(n) + 1. Zero also satisfies the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base-14 digits of n), but this sequence only considers positive terms. - M. F. Hasler, Nov 22 2019
LINKS
Joseph Myers, Table of n, a(n) for n=1..103 (the full list of terms, from Winter)
Henk Koppelaar and Peyman Nasehpour, On Hardy's Apology Numbers, arXiv:2008.08187 [math.NT], 2020.
Eric Weisstein's World of Mathematics, Narcissistic Number
D. T. Winter, Table of Armstrong Numbers
MATHEMATICA
Select[Range[2 * 10^7], # == Total[IntegerDigits[#, 14]^IntegerLength[#, 14]] &] (* Michael De Vlieger, Nov 04 2020 *)
PROG
(PARI) select( is_A161951(n)={n==vecsum([d^#n|d<-n=digits(n, 14)])}, [1..10^6\3]) \\ M. F. Hasler, Nov 22 2019
CROSSREFS
KEYWORD
base,fini,full,nonn
AUTHOR
Joseph Myers, Jun 22 2009
STATUS
approved