login
A007980
Expansion of (1+x^2)/((1-x)^2*(1-x^3)).
17
1, 2, 4, 7, 10, 14, 19, 24, 30, 37, 44, 52, 61, 70, 80, 91, 102, 114, 127, 140, 154, 169, 184, 200, 217, 234, 252, 271, 290, 310, 331, 352, 374, 397, 420, 444, 469, 494, 520, 547, 574, 602, 631, 660, 690, 721, 752, 784, 817, 850, 884, 919, 954, 990, 1027, 1064
OFFSET
0,2
COMMENTS
Molien series for ternary self-dual codes over GF(3) of length 12n containing 11...1.
(1+x)*(1+x^2) / ((1-x)*(1-x^2)*(1-x^3)) is the Poincaré series [or Poincare series] (or Molien series) for H^*(O_3(q); F_2).
a(n) is the position of the n-th triangular number in the running sum of the (pseudo-Orloj) sequence 1,2,1,2,1,2,1...., cf. A028355. - Wouter Meeussen, Mar 10 2002
a(n) = [a(n-1) + (number of even terms so far in the sequence)]. Example: 14 is [10 + 4 even terms so far in the sequence (they are 0,2,4,10)]. See A096777 for the same construction with odd integers. - Eric Angelini, Aug 05 2007
The number of partitions of 2*n into at most 3 parts. - Colin Barker, Mar 31 2015
Also a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of a trigonal Rotational Energy Surface. An optimal basis for the expansion follows either decomposition: g1(x) = (1+x)(1+x^2)g2(x) or g1(x) = (1+x^2)x^(-1)g3(x), where g1(x), g2(x), g3(x) are the generating functions for sequences A007980, A001399, A001840. - Bradley Klee, Aug 06 2015
Also a(n) equals the number of linearly-independent terms at 4n-th order in the power series expansion of the symmetrized weight enumerator of a self-dual code of length n over Z4 that contains a vector (+/-)1^n and has all norms divisible by 8. An optimal basis for the expansion follows the decomposition: g1(x) = (1+x)(1+x^2)g2(x) where g1(x), g2(x) are the generating functions for sequences A007980, A001399. (Cf. Calderbank and Sloane, Corollary 5.) - Bradley Klee, Aug 06 2015
Also, a(n) is equal to the number of partitions of 2n+3 of length 3. Letting n=4, there are a(4)=10 partitions of 2n+3=11 of length 3: (9,1,1), (8,2,1), (7,3,1), (7,2,2), (6,4,1), (6,3,2), (5,5,1), (5,4,2), (5,3,3), (4,4,3). - John M. Campbell, Jan 30 2016
a(n) is the number of partitions of n into parts 1 (of two kinds), part 2 (occurring at most once), and parts 3. - Joerg Arndt, Oct 12 2020
Conjecture: a(n) is the maximum number of pieces a triangle can be cut into by n cevians. - Anton Zakharov, Apr 04 2017
Also, a(n) is the number of graphs which are double-triangle descendants of K_5 with n+6 triangles and 3 more vertices than triangles. See Laradji/Mishna/Yeats reference, proposition 3.6 for details. - Karen A. Yeats, Feb 21 2020
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.
LINKS
Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_4, J. Algeb. Combin., 6 (1997) 119-131 (Abstract, pdf, ps).
Mohamed Laradji, Marni Mishna, and Karen Yeats, Some results on double triangle descendants of K_5, arXiv:1904.06923 [math.CO], 2019.
C. L. Mallows and N. J. A. Sloane, Weight enumerators of self-orthogonal codes over GF(3), SIAM J. Alg. Discrete Methods, 2 (1981), 452-460.
Paul Tabatabai and Dieter P. Gruber, Knights and Liars on Graphs, J. Int. Seq., Vol. 24 (2021), Article 21.5.8.
Anton Zakharov, cevians.
FORMULA
G.f.: (1 + x^2) / ((1 - x)^2 * (1 - x^3)). - Michael Somos, Jun 07 2003
a(n) = a(n-1) + a(n-3) -a(n-4) + 2 = a(-3-n) for all n in Z. - Michael Somos, Jun 07 2003
a(n) = ceiling((n+1)*(n+2)/3). - Paul Boddington, Jan 26 2004
a(n) = A192736(n+1) / (n+1). - Reinhard Zumkeller, Jul 08 2011
From Bruno Berselli, Oct 22 2010: (Start)
a(n) = ((n+1)*(n+2)+(2*cos(2*Pi*n/3)+1)/3)/3 = Sum_{i=1..n+1} A004396(i).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.
a(n) = A002378(n+1)/3 if 3 divides A002378(n+1), a(n) = (A002378(n)+1)/3 otherwise. (End)
a(n) = A001840(n+1) + A001840(n-1). - R. J. Mathar, Aug 23 2015
From Michael Somos, Aug 23 2015: (Start)
Euler transform of length 4 sequence [2, 1, 1, -1].
a(n) = A001399(2*n) = A008796(2*n) = A008796(2*n + 3) = A069905(2*n + 3) = A211540(2*n + 5).
a(2*n) = A238705(n+1).
a(3*n - 1) = A049451(n).
a(3*n) = A003215(n).
a(3*n + 1) = A049450(n+1).
2*a(3*n - 1) = A005449(n).
2*a(3*n + 1) = A000326(n+1).
a(n+1) - a(n) = A004396(n+2). (End)
a(n) = floor((n^2+3*n+3)/3). - Giacomo Guglieri, May 01 2019
a(n) = A000212(n) + n+1. - Yuchun Ji, Oct 12 2020
Sum_{n>=0} 1/a(n) = (tanh(Pi/(2*sqrt(3)))-1)*Pi/sqrt(3) + 3. - Amiram Eldar, May 20 2023
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 10*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + ...
MAPLE
with (combinat):seq(count(Partition((2*n+1)), size=3), n=1..56); # Zerinvary Lajos, Mar 28 2008
MATHEMATICA
Table[Ceiling[n (n+1)/3], {n, 56}]
CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^3)), {x, 0, 60}], x] (* Vincenzo Librandi, Feb 25 2012 *)
a[ n_] := Quotient[ n^2, 3] + n + 1; (* Michael Somos, Aug 23 2015 *)
LinearRecurrence[{2, -1, 1, -2, 1}, {1, 2, 4, 7, 10}, 60] (* Harvey P. Dale, Aug 24 2016 *)
PROG
(PARI) {a(n) = if( n<-1, a(-3-n), polcoeff( (1 + x^2) / ( (1 - x)^2 * (1 - x^3)) + x*O(x^n), n))}; /* Michael Somos, Jun 07 2003 */
(PARI) {a(n) = n^2\3 + n+1}; /* Michael Somos, Aug 23 2015 */
(PARI) a(n) = #partitions(2*n, , [1, 3]); \\ Michel Marcus, Feb 12 2016
(PARI) a(n) = #partitions(2*n+3, , [3, 3]); \\ Michel Marcus, Feb 12 2016
KEYWORD
nonn,easy
STATUS
approved