OFFSET
1,2
COMMENTS
This remarkable sequence is really a sequence of lists rather than numbers.
REFERENCES
Zdenek Horsky, "Prazsky Orloj" ["The Astronomical Clock of Prague", in Czech], Panorama, Prague, 1988, pp. 76-78.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..2500
Michal Krížek, Alena Šolcová and Lawrence Somer, Construction of Šindel sequences, Comment. Math. Univ. Carolin., 48 (2007), 373-388.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
FORMULA
Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = 1000001*a(n-15) - 1000000*a(n-30) for n > 30.
G.f.: x*(100000*x^28 + 200000*x^27 + 300000*x^26 + 400000*x^25 + 320000*x^24 + 123000*x^23 + 430000*x^22 + 212300*x^21 + 432000*x^20 + 123400*x^19 + 321230*x^18 + 432120*x^17 + 343210*x^16 + 234320*x^15 + 123432*x^14 + 23432*x^13 + 34321*x^12 + 43212*x^11 + 32123*x^10 + 1234*x^9 + 432*x^8 + 2123*x^7 + 43*x^6 + 123*x^5 + 32*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(1000000*x^30 - 1000001*x^15 + 1). (End)
EXAMPLE
1, 2, 3, 4, 3+2=5, 1+2+3=6, 4+3=7, 2+1+2+3=8, 4+3+2=9, 1+2+3+4=10, 3+2+1+2+3=11, 4+3+2+1+2=12, 3+4+3+2+1=13, 2+3+4+3+2=14, 1+2+3+4+3+2=15, ...
MATHEMATICA
s[i_] := {1, 2, 3, 4, 3, 2}[[Mod[i, 6, 1]]];
m[k_] := If[k == 1, 0, For[m0 = 1, True, m0++, If[k (k - 1)/2 == Sum[s[i], {i, 1, m0}], Return[m0]]]];
n[k_] := For[n0 = m[k] + 1, True, n0++, If[Sum[s[i], {i, m[k] + 1, n0}] == k, Return[n0]]];
a[k_] := a[k] = Table[s[i], {i, m[k] + 1, n[k]}] // FromDigits; Array[a, 27] (* Jean-François Alcover, Mar 14 2016 *)
CROSSREFS
KEYWORD
nonn,nice,base
AUTHOR
STATUS
approved