login
A008796
Molien series for 3-dimensional group [2,3]+ = 223; also for group H_{1,2} of order 384.
2
1, 0, 2, 1, 4, 2, 7, 4, 10, 7, 14, 10, 19, 14, 24, 19, 30, 24, 37, 30, 44, 37, 52, 44, 61, 52, 70, 61, 80, 70, 91, 80, 102, 91, 114, 102, 127, 114, 140, 127, 154, 140, 169, 154, 184, 169, 200, 184, 217, 200, 234, 217, 252, 234, 271, 252, 290, 271, 310, 290, 331, 310, 352, 331, 374, 352, 397
OFFSET
0,3
LINKS
E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II Codes, Even Unimodular Lattices and Invariant Rings, IEEE Trans. Information Theory, Volume 45, Number 4, 1999, 1194-1205.
FORMULA
G.f.: (1+x^4)/((1-x^2)^2*(1-x^3)).
a(n) = (1/72) * (9*(-1)^n*(2*n + 3) + 6*n^2 + 18*n + 29 - 8*A061347[n]). - Ralf Stephan, Apr 28 2014
MAPLE
seq(coeff(series((1+x^4)/((1-x^2)^2*(1-x^3)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 11 2019
MATHEMATICA
LinearRecurrence[{0, 2, 1, -1, -2, 0, 1}, {1, 0, 2, 1, 4, 2, 7}, 70] (* Harvey P. Dale, Apr 27 2014 *)
CoefficientList[Series[(1+x^4)/((1-x^2)^2*(1-x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Apr 28 2014 *)
PROG
(PARI) a(n)=(9*(-1)^n*(2*n + 3) + 6*n^2 + 18*n + 24*!(n%3) + 21)/72 \\ Charles R Greathouse IV, Feb 10 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^4)/((1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Sep 11 2019
(Sage)
def A008796_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^4)/((1-x^2)^2*(1-x^3))).list()
A008796_list(70) # G. C. Greubel, Sep 11 2019
(GAP) a:=[1, 0, 2, 1, 4, 2, 7];; for n in [8..70] do a[n]:=2*a[n-2]+a[n-3]-a[n-4]-2*a[n-5]+a[n-7]; od; a; # G. C. Greubel, Sep 11 2019
CROSSREFS
Cf. A008795.
Sequence in context: A256610 A276055 A252866 * A254594 A280948 A325345
KEYWORD
nonn,nice,easy
EXTENSIONS
Definition clarified by N. J. A. Sloane, Feb 02 2018
More terms added by G. C. Greubel, Sep 11 2019
STATUS
approved