OFFSET
0,2
REFERENCES
T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 223, Problem 2.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..224 (terms 0..50 from T. D. Noe)
FORMULA
E.g.f.: (arcsin x)^3; that is, a_k is the coefficient of x^(2*k+3) in (arcsin x)^3 multiplied by (2*k+3)! and divided by 6. - Joe Keane (jgk(AT)jgk.org)
a(n) = ((2*n+1)!!)^2 * Sum_{k=0..n} (2*k+1)^(-2).
a(n) ~ Pi^2*n^2*2^(2*n)*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
(-1)^(n-1)*a(n-1) is the coefficient of x^2 in Product_{k=1..2*n} (x + 2*k - 2*n - 1). - Benoit Cloitre and Michael Somos, Nov 22 2002
a(n) = det(V(i+2,j+1), 1 <= i,j <= n), where V(n,k) are central factorial numbers of the second kind with odd indices (A008958). - Mircea Merca, Apr 06 2013
Recurrence: a(n) = 2*(4*n^2+1)*a(n-1) - (2*n-1)^4*a(n-2). - Vladimir Reshetnikov, Oct 13 2016
Limit_{n->infinity} a(n)/((2n+1)!!)^2 = Pi^2/8. - Daniel Suteu, Oct 31 2017
EXAMPLE
(arcsin x)^3 = x^3 + 1/2*x^5 + 37/120*x^7 + 3229/15120*x^9 + ...
MATHEMATICA
a[n_] = (2n+1)!!^2 (Pi^2 - 2 PolyGamma[1, n+3/2])/8; a /@ Range[0, 12] // Simplify (* Jean-François Alcover, Apr 22 2011, after Joe Keane *)
With[{nn=30}, Take[(CoefficientList[Series[ArcSin[x]^3, {x, 0, nn}], x] Range[0, nn-1]!)/6, {4, -1, 2}]] (* Harvey P. Dale, Feb 05 2012 *)
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Joe Keane (jgk(AT)jgk.org)
STATUS
approved