login
A002455
Central factorial numbers.
(Formerly M5103 N2210)
7
0, 1, 20, 784, 52480, 5395456, 791691264, 157294854144, 40683662475264, 13288048674471936, 5349739088314368000, 2603081566154391552000, 1506057980251484454912000, 1021944601582419125993472000
OFFSET
0,3
REFERENCES
B. Berndt, Ramanujan's Notebooks, Part I, page 263.
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
(-1)^(n-1)*a(n) is the coefficient of x^3 in Product_{k=0..2*n} (x+2*k-2*n). - Benoit Cloitre and Michael Somos, Nov 22 2002
E.g.f.: (arcsin x)^4; that is, a_k is the coefficient of x^(2*k+2) in (arcsin x)^4 multiplied by (2*k+2)! and divided by 4! Also a(n) = 2^(2*n-2)*(n!)^2 * Sum_{k=1..n} 1/k^2. - Joe Keane (jgk(AT)jgk.org)
a(n) = 4*(2*n^2 - 2*n + 1)*a(n-1) - 16*(n-1)^4*a(n-2). - Vaclav Kotesovec, Feb 23 2015
a(n) ~ Pi^3 * 2^(2*n-2) * n^(2*n+1) / (3 * exp(2*n)). - Vaclav Kotesovec, Feb 23 2015
EXAMPLE
(arcsin x)^4 = x^4 + 2/3*x^6 + 7/15*x^8 + 328/945*x^10 + ...
MATHEMATICA
nmax = 13; coes = CoefficientList[ Series[ ArcSin[x]^4, {x, 0, 2*nmax + 2}], x]* Range[0, 2*nmax + 2]!/24; a[n_] := coes[[2*n + 3]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 08 2011 *)
Table[4^(n-1)*(n!)^2*HarmonicNumber[n, 2], {n, 0, 20}] (* G. C. Greubel, Jul 04 2019 *)
PROG
(PARI) a(n)=if(n<0, 0, (2*n+2)!*polcoeff(asin(x+O(x^(2*n+3)))^4/4!, 2*n+2))
(PARI) a(n)=-(-1)^n*polcoeff(prod(k=0, 2*n, x+2*k-2*n), 3)
(Magma) [0] cat [4^(n-1)*(Factorial(n))^2*(&+[1/k^2: k in [1..n]]): n in [1..20]]; // G. C. Greubel, Jul 04 2019
(Sage) [4^(n-1)*(factorial(n))^2*sum(1/k^2 for k in (1..n)) for n in (0..20)] # G. C. Greubel, Jul 04 2019
(GAP) List([0..20], n-> 4^(n-1)*(Factorial(n))^2*Sum([1..n], k-> 1/k^2)) # G. C. Greubel, Jul 04 2019
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Joe Keane (jgk(AT)jgk.org)
STATUS
approved