login
A001827
Related to graded partially ordered sets.
(Formerly M3591 N1456)
5
1, 4, 22, 166, 1726, 24814, 494902, 13729846, 531077086, 28697950174, 2170176736102, 230007989092006, 34211282155446286, 7149766552058591374, 2101690590380890192342, 869808621195903097079446, 507261036269544624540347326
OFFSET
0,2
COMMENTS
Corresponds to the numbers c(4,n) in the Klarner paper. - Sean A. Irvine, Sep 24 2015
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
FORMULA
a(n) = Sum_{p+q+r+s=n} (n!/p!q!r!s!) 2^(pq+qr+rs) where (p,q,r,s) is any nonnegative composition of n. - Sean A. Irvine, Sep 24 2015
CROSSREFS
Column k=4 of A361950.
Sequence in context: A247249 A368319 A113351 * A363115 A368285 A350268
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Sep 24 2015
STATUS
approved