login
A008956
Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).
25
1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
OFFSET
0,5
COMMENTS
The n-th row gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first (see the discussion of central factorial numbers in A008955). - N. J. A. Sloane, Feb 01 2011
Descending row polynomials in x^2 evaluated at k generate odd coefficients of e.g.f. sin(arcsin(kt)/k): 1, x^2 - 1, 9x^4 - 10x^2 + 1, 225x^6 - 259x^4 + 34x^2 - 1, ... - Ralf Stephan, Jan 16 2005
From Johannes W. Meijer, Jun 18 2009: (Start)
We define (Pi/2)*Beta(n-1/2-z/2,n-1/2+z/2)/Beta(n-1/2,n-1/2) = (Pi/2)*Gamma(n-1/2-z/2)* Gamma(n-1/2+z/2)/Gamma(n-1/2)^2 = sum(BG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. Our definition leads to BG2[2m,1] = 2*beta(2m+1) and the recurrence relation BG2[2m,n] = BG2[2m,n-1] - BG2[2m-2,n-1]/(2*n-3)^2 for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). We observe that beta(2m+1) = 0 for m = -1, -2, -3, .. .We found for the BG2[2*m,n] = sum((-1)^(k+n)*t2(n-1,k-1)* 2*beta(2*m-2*n+2*k+1),k=1..n)/((2*n-3)!!)^2 with the central factorial numbers t2(n,m) as defined above; see also the Maple program.
From the BG2 matrix and the closely related EG2 and ZG2 matrices, see A008955, we arrive at the LG2 matrix which is defined by LG2[2m-1,1] = 2*lambda(2*m) and the recurrence relation LG2[2*m-1,n] = LG2[2*m-3,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG2[2*m-1,n-1]/(2*n-1) for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. We found for the matrix coefficients LG2[2m-1,n] = sum((-1)^(k+1)* t2(n-1,k-1)*2*lambda(2*m-2*n+2*k)/((2*n-1)!!*(2*n-3)!!), k=1..n) and we see that the central factorial numbers t2(n,m) once again play a crucial role.
(End)
REFERENCES
P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812. [From Johannes W. Meijer, Jun 18 2009]
R. H. Boels, T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541 [math-ph], 2014.
T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767 [math-ph], 2014.
M. Eastwood and H. Goldschmidt, Zero-energy fields on complex projective space, arXiv preprint arXiv:1108.1602 [math.DG], 2011.
FORMULA
Conjecture row sums: Sum_{k=0..n} T(n,k) = |A101927(n+1)|. - R. J. Mathar, May 29 2009
May be generated by the recurrence t2(n,k) = (2*n-1)^2*t2(n-1,k-1)+t2(n-1,k) with t2(n,0) = 1 and t2(n,n)=((2*n-1)!!)^2. - Johannes W. Meijer, Jun 18 2009
EXAMPLE
Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
MAPLE
f:=n->mul(x+(2*i+1)^2, i=0..n-1);
for n from 0 to 12 do
t1:=eval(f(n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y, t1); t2:=seriestolist(series(t12, y, 20));
lprint(t2);
od: # N. J. A. Sloane, Feb 01 2011
A008956 := proc(n, k) local i ; mul( x+2*i-2*n-1, i=1..2*n) ; expand(%) ; coeftayl(%, x=0, 2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a, ", A008956(n, k)) ; od: od: # R. J. Mathar, May 29 2009
nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
MATHEMATICA
t[_, 0] = 1; t[n_, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
PROG
(PARI) {T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
(Haskell)
a008956 n k = a008956_tabl !! n !! k
a008956_row n = a008956_tabl !! n
a008956_tabl = [1] : f [1] 1 1 where
f xs u t = ys : f ys v (t * v) where
ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
v = u + 2
-- Reinhard Zumkeller, Dec 24 2013
CROSSREFS
Cf. A008958.
Columns include A000447, A001823. Right-hand columns include A001818, A001824, A001825. Cf. A008955.
Appears in A160480 (Beta triangle), A160487 (Lambda triangle), A160479 (ZL(n) sequence), A161736, A002197 and A002198. - Johannes W. Meijer, Jun 18 2009
Cf. A162443 (BG1 matrix) and A162448 (LG1 matrix). - Johannes W. Meijer, Jul 06 2009
Cf. A001147.
Sequence in context: A280902 A118768 A318255 * A291560 A259567 A022966
KEYWORD
tabl,nonn,easy
EXTENSIONS
More terms from Vladeta Jovovic, Apr 16 2000
Edited by N. J. A. Sloane, Feb 01 2011
STATUS
approved