login
A001643
A Fielder sequence.
(Formerly M2368 N0938)
2
1, 3, 4, 11, 21, 42, 71, 131, 238, 443, 815, 1502, 2757, 5071, 9324, 17155, 31553, 58038, 106743, 196331, 361106, 664183, 1221623, 2246918, 4132721, 7601259, 13980892, 25714875, 47297029, 86992802, 160004703, 294294531, 541292030, 995591267, 1831177831
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
G.f.: x*(1+2*x+4*x^3+5*x^4+6*x^5)/(1-x-x^2-x^4-x^5-x^6).
From Greg Dresden, Jul 07 2021: (Start)
a(3*n+1) = A001644(3*n+1).
a(3*n+2) = A001644(3*n+2).
a(3*n+3) = A001644(3*n+3) - 3*(-1)^n. (End)
MAPLE
A001643:=-(1+2*z+4*z**3+5*z**4+6*z**5)/(z+1)/(z**3+z**2+z-1)/(z**2-z+1); [Conjectured by Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
LinearRecurrence[{1, 1, 0, 1, 1, 1}, {1, 3, 4, 11, 21, 42}, 50] (* T. D. Noe, Aug 09 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x*(1+2*x+4*x^3+5*x^4+6*x^5)/(1-x-x^2-x^4-x^5-x^6)+x*O(x^n), n))
(Magma) I:=[1, 3, 4, 11, 21, 42]; [n le 6 select I[n] else Self(n-1) + Self(n-2) + Self(n-4) + Self(n-5) + Self(n-6): n in [1..30]]; // G. C. Greubel, Jan 09 2018
CROSSREFS
Cf. A001644.
Sequence in context: A110865 A152982 A001642 * A247171 A005218 A219514
KEYWORD
nonn
STATUS
approved