login
A001642
A Fielder sequence.
(Formerly M2367 N0937)
5
1, 3, 4, 11, 21, 36, 64, 115, 211, 383, 694, 1256, 2276, 4126, 7479, 13555, 24566, 44523, 80694, 146251, 265066, 480406, 870689, 1578040, 2860046, 5183558, 9394699, 17026986, 30859771, 55930361, 101368389, 183720435, 332975581, 603486148, 1093760479
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
G.f.: x(1+2x+4x^3+5x^4)/(1-x-x^2-x^4-x^5).
MAPLE
A001642:=-(z+1)*(5*z**3-z**2+z+1)/(-1+z+z**2+z**4+z**5); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
LinearRecurrence[{1, 1, 0, 1, 1}, {1, 3, 4, 11, 21}, 50] (* T. D. Noe, Aug 09 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x*(1+2*x+4*x^3+5*x^4)/(1-x-x^2-x^4-x^5)+x*O(x^n), n))
(Magma) I:=[1, 3, 4, 11, 21]; [n le 5 select I[n] else Self(n-1) + Self(n-2) + Self(n-4) + Self(n-5): n in [1..30]]; // G. C. Greubel, Jan 09 2018
CROSSREFS
Sequence in context: A000677 A110865 A152982 * A001643 A247171 A005218
KEYWORD
nonn
STATUS
approved