login
A005218
Number of unlabeled reduced unit interval graphs on n nodes.
(Formerly M2369)
1
0, 0, 1, 1, 3, 4, 11, 21, 55, 124, 327, 815, 2177, 5712, 15465, 41727, 114291, 313504, 866963, 2404251, 6701321, 18733340, 52557441, 147849031, 417080105, 1179355476, 3342487033, 9492629497, 27011665839, 77000574224
OFFSET
1,5
REFERENCES
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Phil Hanlon, Counting interval graphs, Trans. Amer. Math. Soc. 272 (1982), no. 2, 383-426.
FORMULA
G.f.: -z + (1/4)*(1+2z-z^2)/sqrt((1+z^2)*(1-3z^2)) - (1/4)*sqrt((1-3z)/(1+z)). - Emeric Deutsch, Nov 19 2004
MAPLE
G:=-z+(1+2*z-z^2)/4/sqrt((1+z^2)*(1-3*z^2))-sqrt((1-3*z)/(1+z))/4: Gser:=series(G, z=0, 30): seq(coeff(Gser, z^n), n=1..28); # Emeric Deutsch, Nov 19 2004
CROSSREFS
Sequence in context: A001642 A001643 A247171 * A219514 A131481 A001072
KEYWORD
nonn
EXTENSIONS
More terms from Emeric Deutsch, Nov 19 2004
STATUS
approved