login
A000959
Lucky numbers.
(Formerly M2616 N1035)
310
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297, 303
OFFSET
1,2
COMMENTS
An interesting general discussion of the phenomenon of 'random primes' (generalizing the lucky numbers) occurs in Hawkins (1958). Heyde (1978) proves that Hawkins' random primes do not only almost always satisfy the Prime Number Theorem but also the Riemann Hypothesis. - Alf van der Poorten, Jun 27 2002
Bui and Keating establish an asymptotic formula for the number of k-difference twin primes, and more generally to all l-tuples, of Hawkins primes, a probabilistic model of the Eratosthenes sieve. The formula for k = 1 was obtained by Wunderlich [Acta Arith. 26 (1974), 59 - 81]. - Jonathan Vos Post, Mar 24 2009. (This is quoted from the abstract of the Bui-Keating (2006) article, Joerg Arndt, Jan 04 2014)
It appears that a 1's line is formed, as in the Gilbreath's conjecture, if we use 2 (or 4), 3, 5 (differ of 7), 9, 13, 15, 21, 25, ... instead of A000959 1, 3, 7, 9, 13, 15, 21, 25, ... - Eric Desbiaux, Mar 25 2010
REFERENCES
Martin Gardner, Gardner's Workout, Chapter 21 "Lucky Numbers and 2187" pp. 149-156 A. K. Peters MA 2002.
Richard K. Guy, Unsolved Problems in Number Theory, C3.
C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 99.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. L. Stein and P. R. Stein, Tables of the Number of Binary Decompositions of All Even Numbers Less Than 200,000 into Prime Numbers and Lucky Numbers. Report LA-3106, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Sep 1964.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 114.
LINKS
Hugo van der Sanden, Table of n, a(n) for n = 1..200000 (terms 1..10000 from T. D. Noe, terms 10001..30981 from R. J. Mathar)
H. M. Bui and J. P. Keating, On twin primes associated with the Hawkins random sieve, J. Number Theory 119(2) (2006), 284-296.
H. M. Bui and J. P. Keating, On twin primes associated with the Hawkins random sieve, arXiv:math/0607196 [math.NT], 2006-2010.
Vema Gardiner, R. Lazarus, N. Metropolis, and S. Ulam, On certain sequences of integers defined by sieves, Math. Mag., 29 (1956), 117-122. doi:10.2307/3029719; Zbl 0071.27002.
Martin Gardner, Lucky numbers and 2187, Math. Intellig., 19(2) (1997), 26-29.
David Hawkins, The random sieve, Math. Mag. 31 (1958), 1-3.
D. Hawkins and W. E. Briggs, The lucky number theorem, Math. Mag. 31 (1958), 81-84.
C. C. Heyde, A Log Log Improvement to the Riemann Hypothesis for the Hawkins Random Sieve, Ann. Probability, 6 (1978), 850-875.
Ivars Peterson and MathTrek, Martin Gardner's Lucky Numbers (archived on Archive.org).
Ivars Peterson, Martin Gardner's Lucky Numbers (archived on Wikiwix.com)
Popular Computing (Calabasas, CA), Sieves: Problem 43, Vol. 2 (No. 13, Apr 1974), pp. 6-7. This is Sieve #7. [Annotated and scanned copy]
Walter Schneider, Lucky Numbers.
Hugo van der Sanden, Lucky numbers up to 1e8. [Broken link]
G. Villemin's Almanach of Numbers, Nombre Chanceux.
Eric Weisstein's World of Mathematics, Lucky number.
Wikipedia, Lucky number.
FORMULA
Start with the natural numbers. Delete every 2nd number, leaving 1 3 5 7 ...; the 2nd number remaining is 3, so delete every 3rd number, leaving 1 3 7 9 13 15 ...; now delete every 7th number, leaving 1 3 7 9 13 ...; now delete every 9th number; etc.
a(n) = A254967(n-1, n-1). - Reinhard Zumkeller, Feb 11 2015
a(n) = A258207(n,n). [Where A258207 is a square array constructed from the numbers remaining after each step described above.] - Antti Karttunen, Aug 06 2015
A145649(a(n)) = 1; complement of A050505. - Reinhard Zumkeller, Oct 15 2008
Other identities from Antti Karttunen, Feb 26 2015: (Start)
For all n >= 1, A109497(a(n)) = n.
For all n >= 1, a(n) = A000040(n) + A032600(n).
For all n >= 2, a(n) = A255553(A000040(n)).
(End)
MAPLE
## luckynumbers(n) returns all lucky numbers from 1 to n. ## Try n=10^5 just for fun. luckynumbers:=proc(n) local k, Lnext, Lprev; Lprev:=[$1..n]; for k from 1 do if k=1 or k=2 then Lnext:= map(w-> Lprev[w], remove(z -> z mod Lprev[2] = 0, [$1..nops(Lprev)])); if nops(Lnext)=nops(Lprev) then break fi; Lprev:=Lnext; else Lnext:= map(w-> Lprev[w], remove(z -> z mod Lprev[k] = 0, [$1..nops(Lprev)])); if nops(Lnext)=nops(Lprev) then break fi; Lprev:=Lnext; fi; od; return Lnext; end: # Walter Kehowski, Jun 05 2008; typo fixed by Robert Israel, Nov 19 2014
# Alternative
A000959List := proc(mx) local i, L, n, r;
L:= [seq(2*i+1, i=0..mx)]:
for n from 2 while n < nops(L) do
r:= L[n];
L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
od: L end:
A000959List(10^3); # Robert Israel, Nov 19 2014
MATHEMATICA
luckies = 2*Range@200 - 1; f[n_] := Block[{k = luckies[[n]]}, luckies = Delete[luckies, Table[{k}, {k, k, Length@luckies, k}]]]; Do[f@n, {n, 2, 30}]; luckies (* Robert G. Wilson v, May 09 2006 *)
sieveMax = 10^6; luckies = Range[1, sieveMax, 2]; sieve[n_] := Module[{k = luckies[[n]]}, luckies = Delete[luckies, Table[{i}, {i, k, Length[luckies], k}]]]; n = 1; While[luckies[[n]] < Length[luckies], n++; sieve[n]]; luckies
L = Table[2*i + 1, {i, 0, 10^3}]; For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]]; L (* Jean-François Alcover, Mar 15 2016, after Robert Israel *)
PROG
(Haskell)
a000959 n = a000959_list !! (n-1)
a000959_list = 1 : sieve 2 [1, 3..] where
sieve k xs = z : sieve (k + 1) (lucky xs) where
z = xs !! (k - 1 )
lucky ws = us ++ lucky vs where
(us, _:vs) = splitAt (z - 1) ws
-- Reinhard Zumkeller, Dec 05 2011
(C++) // See Wilson link, Nov 14 2012
(PARI) A000959_upto(nMax)={my(v=vectorsmall(nMax\2, k, 2*k-1), i=1, q); while(v[i++]<=#v, v=vecextract(v, 2^#v-1-(q=1<<v[i])^(#v\v[i])\(q-1)<<(v[i]-1) )); v} \\ M. F. Hasler, Sep 22 2013, improved Jan 20 2020
(Python)
def lucky(n):
L = list(range(1, n + 1, 2))
j = 1
while j <= len(L) - 1 and L[j] <= len(L):
del L[L[j]-1::L[j]]
j += 1
return L
# Robert FERREOL, Nov 19 2014, corrected by F. Chapoton, Mar 29 2020, performance improved by Ely Golden, Aug 18 2022
(Scheme)
(define (A000959 n) ((rowfun_n_for_A000959sieve n) n)) ;; Code for rowfun_n_for_A000959sieve given in A255543.
;; Antti Karttunen, Feb 26 2015
CROSSREFS
Main diagonal of A258207.
Column 1 of A255545. (cf. also arrays A255543, A255551).
Cf. A050505 (complement).
Cf. A145649 (characteristic function).
Cf. A031883 (first differences), A254967 (iterated absolute differences), see also A054978.
Cf. A109497 (works as a left inverse function).
The Gilbreath transform is A054978 - see also A362460, A362461, A362462.
Sequence in context: A336234 A024901 A258011 * A204085 A230076 A120226
KEYWORD
nonn,easy,nice,core
AUTHOR
N. J. A. Sloane; entry updated Mar 07 2008
STATUS
approved