login
A230076
a(n) = (A007521(n)-1)/4.
2
1, 3, 7, 9, 13, 15, 25, 27, 37, 39, 43, 45, 49, 57, 67, 69, 73, 79, 87, 93, 97, 99, 105, 115, 127, 135, 139, 153, 163, 165, 169, 175, 177, 183, 189, 193, 199, 205, 207, 213, 219, 235, 249, 253, 255, 265, 267, 273, 277, 279, 295, 303, 307
OFFSET
1,2
COMMENTS
Because A007521(n) are the primes congruent 5 (mod 8) it is clear that a(n) is congruent 1 (mod 2), that is odd.
2*a(n) = A055034(A007521(n)), the degree of the minimal polynomial C(A007521(n), x) of 2*rho(Pi/A007521(n)) (see A187360).
LINKS
FORMULA
a(n) = (A007521(n)-1)/4.
EXAMPLE
The minimal polynomial C(A007521(2), x) = C(13, x) has degree 6 = 2*a(2) because C(13, x) = x^6 - x^5 - 5*x^4 + 4*x^3 + 6*x^2 - 3*x -1.
MATHEMATICA
(Select[8*Range[0, 200] + 5, PrimeQ] - 1)/4 (* Amiram Eldar, Jun 08 2022 *)
CROSSREFS
Cf. A007521, A055034, A187360, 4*A005123 (1 (mod 8) case), A186287 (3 (mod 8) case), A186302 (7 (mod 8) case).
Sequence in context: A258011 A000959 A204085 * A120226 A137310 A118567
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 24 2013
STATUS
approved