After you train your own model using AutoML Vision Edge, you can use it in your app to label images.
Before you begin
- If you haven't already, add Firebase to your Android project.
- Add the dependencies for the ML Kit Android libraries to your module
(app-level) Gradle file (usually
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5' }
1. Load the model
ML Kit runs your AutoML-generated models on the device. However, you can configure ML Kit to load your model either remotely from Firebase, from local storage, or both.
By hosting the model on Firebase, you can update the model without releasing a new app version, and you can use Remote Config and A/B Testing to dynamically serve different models to different sets of users.
If you choose to only provide the model by hosting it with Firebase, and not bundle it with your app, you can reduce the initial download size of your app. Keep in mind, though, that if the model is not bundled with your app, any model-related functionality will not be available until your app downloads the model for the first time.
By bundling your model with your app, you can ensure your app's ML features still work when the Firebase-hosted model isn't available.
Configure a Firebase-hosted model source
To use the remotely-hosted model, create a FirebaseAutoMLRemoteModel
object,
specifying the name you assigned the model when you published it:
Java
// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();
Kotlin+KTX
// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()
Then, start the model download task, specifying the conditions under which you want to allow downloading. If the model isn't on the device, or if a newer version of the model is available, the task will asynchronously download the model from Firebase:
Java
FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener(new OnCompleteListener<Void>() {
@Override
public void onComplete(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin+KTX
val conditions = FirebaseModelDownloadConditions.Builder()
.requireWifi()
.build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Success.
}
Many apps start the download task in their initialization code, but you can do so at any point before you need to use the model.
Configure a local model source
To bundle the model with your app:
- Extract the model and its metadata from the zip archive you downloaded from Firebase console. We recommend you use the files as you downloaded them, without modification (including the file names).
-
Include your model and its metadata files in your app package:
- If you don't have an assets folder in your project, create one by
right-clicking the
app/
folder, then clicking New > Folder > Assets Folder. - Create a sub-folder under the assets folder to contain the model files.
- Copy the files
model.tflite
,dict.txt
, andmanifest.json
to the sub-folder (all three files must be in the same folder).
- If you don't have an assets folder in your project, create one by
right-clicking the
- Add the following to your app's
build.gradle
file to ensure Gradle doesn’t compress the model file when building the app:android { // ... aaptOptions { noCompress "tflite" } }
The model file will be included in the app package and available to ML Kit as a raw asset. - Create a
FirebaseAutoMLLocalModel
object, specifying the path to the model manifest file:Java
FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build();
Kotlin+KTX
val localModel = FirebaseAutoMLLocalModel.Builder() .setAssetFilePath("manifest.json") .build()
Create an image labeler from your model
After you configure your model sources, create a FirebaseVisionImageLabeler
object from one of them.
If you only have a locally-bundled model, just create a labeler from your
FirebaseAutoMLLocalModel
object and configure the confidence score threshold
you want to require (see Evaluate your model):
Java
FirebaseVisionImageLabeler labeler;
try {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build();
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// ...
}
Kotlin+KTX
val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
.build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
If you have a remotely-hosted model, you will have to check that it has been
downloaded before you run it. You can check the status of the model download
task using the model manager's isModelDownloaded()
method.
Although you only have to confirm this before running the labeler, if you have both a remotely-hosted model and a locally-bundled model, it might make sense to perform this check when instantiating the image labeler: create a labeler from the remote model if it's been downloaded, and from the local model otherwise.
Java
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
}
FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console
// to determine an appropriate threshold.
.build();
FirebaseVisionImageLabeler labeler;
try {
labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
// Error.
}
}
});
Kotlin+KTX
FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
} else {
FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Firebase console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}
If you only have a remotely-hosted model, you should disable model-related
functionality—for example, grey-out or hide part of your UI—until
you confirm the model has been downloaded. You can do so by attaching a listener
to the model manager's download()
method:
Java
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin+KTX
FirebaseModelManager.getInstance().download(remoteModel, conditions)
.addOnCompleteListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Prepare the input image
Then, for each image you want to label, create a FirebaseVisionImage
object
using one of the options described in this section and pass it to an instance of
FirebaseVisionImageLabeler
(described in the next section).
You can create a FirebaseVisionImage
object from a media.Image
object, a
file on the device, a byte array, or a Bitmap
object:
-
To create a
FirebaseVisionImage
object from amedia.Image
object, such as when capturing an image from a device's camera, pass themedia.Image
object and the image's rotation toFirebaseVisionImage.fromMediaImage()
.If you use the CameraX library, the
OnImageCapturedListener
andImageAnalysis.Analyzer
classes calculate the rotation value for you, so you just need to convert the rotation to one of ML Kit'sROTATION_
constants before callingFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
If you don't use a camera library that gives you the image's rotation, you can calculate it from the device's rotation and the orientation of camera sensor in the device:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Then, pass the
media.Image
object and the rotation value toFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- To create a
FirebaseVisionImage
object from a file URI, pass the app context and file URI toFirebaseVisionImage.fromFilePath()
. This is useful when you use anACTION_GET_CONTENT
intent to prompt the user to select an image from their gallery app.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- To create a
FirebaseVisionImage
object from aByteBuffer
or a byte array, first calculate the image rotation as described above formedia.Image
input.Then, create a
FirebaseVisionImageMetadata
object that contains the image's height, width, color encoding format, and rotation:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Use the buffer or array, and the metadata object, to create a
FirebaseVisionImage
object:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- To create a
FirebaseVisionImage
object from aBitmap
object:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
object must be upright, with no additional rotation required.
3. Run the image labeler
To label objects in an image, pass the FirebaseVisionImage
object to the
FirebaseVisionImageLabeler
's processImage()
method.
Java
labeler.processImage(image)
.addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
@Override
public void onSuccess(List<FirebaseVisionImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin+KTX
labeler.processImage(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
If image labeling succeeds, an array of FirebaseVisionImageLabel
objects
will be passed to the success listener. From each object, you can get
information about a feature recognized in the image.
For example:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val confidence = label.confidence
}
Tips to improve real-time performance
- Throttle calls to the detector. If a new video frame becomes available while the detector is running, drop the frame.
- If you are using the output of the detector to overlay graphics on the input image, first get the result from ML Kit, then render the image and overlay in a single step. By doing so, you render to the display surface only once for each input frame.
-
If you use the Camera2 API, capture images in
ImageFormat.YUV_420_888
format.If you use the older Camera API, capture images in
ImageFormat.NV21
format.