The Firebase plugin provides integrations with Firebase services, so you can build intelligent and scalable AI applications. Key features include:
- Firestore Vector Store: Use Firestore for indexing and retrieval with vector embeddings.
- Telemetry: Export telemetry to Google's Cloud operations suite that powers the Firebase Genkit Monitoring console.
Installation
Install the Firebase plugin with npm:
npm install @genkit-ai/firebase
Prerequisites
Firebase Project Setup
- All Firebase products require a Firebase project. You can create a new project or enable Firebase in an existing Google Cloud project using the Firebase console.
- If deploying flows with Cloud functions, upgrade your Firebase project to the Blaze plan.
- If you want to run code locally that exports telemetry, you need the Google Cloud CLI tool installed.
Firebase Admin SDK Initialization
You must initialize the Firebase Admin SDK in your application. This is not handled automatically by the plugin.
import { initializeApp } from 'firebase-admin/app';
initializeApp({
projectId: 'your-project-id',
});
The plugin requires you to specify your Firebase project ID. You can specify your Firebase project ID in either of the following ways:
Set
projectId
in theinitializeApp()
configuration object as shown in the snippet above.Set the
GCLOUD_PROJECT
environment variable. If you're running your flow from a Google Cloud environment (Cloud Functions, Cloud Run, and so on),GCLOUD_PROJECT
is automatically set to the project ID of the environment.If you set
GCLOUD_PROJECT
, you can omit the configuration parameter ininitializeApp()
.
Credentials
To provide Firebase credentials, you also need to set up Google Cloud Application Default Credentials. To specify your credentials:
If you're running your flow from a Google Cloud environment (Cloud Functions, Cloud Run, and so on), this is set automatically.
For other environments:
- Generate service account credentials for your Firebase project and download the JSON key file. You can do so on the Service account page of the Firebase console.
- Set the environment variable
GOOGLE_APPLICATION_CREDENTIALS
to the file path of the JSON file that contains your service account key, or you can set the environment variableGCLOUD_SERVICE_ACCOUNT_CREDS
to the content of the JSON file.
Features and usage
Telemetry
Firebase Genkit Monitoring is powered by Google's Cloud operation suite. This requires telemetry related API's to be enabled for your project. Please refer to the Google Cloud plugin documentation for more details.
Grant the following roles to the "Default compute service account" within the Google Cloud IAM Console:
- Monitoring Metric Writer (roles/monitoring.metricWriter)
- Cloud Trace Agent (roles/cloudtrace.agent)
- Logs Writer (roles/logging.logWriter)
To enable telemetry export call enableFirebaseTelemetry()
:
import { enableFirebaseTelemetry } from '@genkit-ai/firebase';
enableFirebaseTelemetry({
forceDevExport: false, // Set this to true to export telemetry for local runs
});
This plugin shares configuration options with the Google Cloud plugin.
Cloud Firestore vector search
You can use Cloud Firestore as a vector store for RAG indexing and retrieval.
This section contains information specific to the firebase
plugin and Cloud
Firestore's vector search feature. See the
Retrieval-augmented generation page for a more detailed
discussion on implementing RAG using Genkit.
Using GCLOUD_SERVICE_ACCOUNT_CREDS
and Firestore
If you are using service account credentials by passing credentials directly
via GCLOUD_SERVICE_ACCOUNT_CREDS
and are also using Firestore as a vector
store, you need to pass credentials directly to the Firestore instance
during initialization or the singleton may be initialized with application
default credentials depending on plugin initialization order.
import {initializeApp} from "firebase-admin/app";
import {getFirestore} from "firebase-admin/firestore";
const app = initializeApp();
let firestore = getFirestore(app);
if (process.env.GCLOUD_SERVICE_ACCOUNT_CREDS) {
const serviceAccountCreds = JSON.parse(process.env.GCLOUD_SERVICE_ACCOUNT_CREDS);
const authOptions = { credentials: serviceAccountCreds };
firestore.settings(authOptions);
}
Define a Firestore retriever
Use defineFirestoreRetriever()
to create a retriever for Firestore
vector-based queries.
import { defineFirestoreRetriever } from '@genkit-ai/firebase';
import { initializeApp } from 'firebase-admin/app';
import { getFirestore } from 'firebase-admin/firestore';
const app = initializeApp();
const firestore = getFirestore(app);
const retriever = defineFirestoreRetriever(ai, {
name: 'exampleRetriever',
firestore,
collection: 'documents',
contentField: 'text', // Field containing document content
vectorField: 'embedding', // Field containing vector embeddings
embedder: yourEmbedderInstance, // Embedder to generate embeddings
distanceMeasure: 'COSINE', // Default is 'COSINE'; other options: 'EUCLIDEAN', 'DOT_PRODUCT'
});
Retrieve documents
To retrieve documents using the defined retriever, pass the retriever instance
and query options to ai.retrieve
.
const docs = await ai.retrieve({
retriever,
query: 'search query',
options: {
limit: 5, // Options: Return up to 5 documents
where: { category: 'example' }, // Optional: Filter by field-value pairs
collection: 'alternativeCollection', // Optional: Override default collection
},
});
Available Retrieval Options
The following options can be passed to the options
field in ai.retrieve
:
limit
: (number) Specify the maximum number of documents to retrieve. Default is10
.where
: (Record<string, any>) Add additional filters based on Firestore fields. Example:where: { category: 'news', status: 'published' }
collection
: (string) Override the default collection specified in the retriever configuration.This is useful for querying subcollections or dynamically switching between
collections.
Populate Firestore with Embeddings
To populate your Firestore collection, use an embedding generator along with the Admin SDK. For example, the menu ingestion script from the Retrieval-augmented generation page could be adapted for Firestore in the following way:
import { genkit } from 'genkit';
import { vertexAI, textEmbedding004 } from "@genkit-ai/vertexai";
import { applicationDefault, initializeApp } from "firebase-admin/app";
import { FieldValue, getFirestore } from "firebase-admin/firestore";
import { chunk } from "llm-chunk";
import pdf from "pdf-parse";
import { readFile } from "fs/promises";
import path from "path";
// Change these values to match your Firestore config/schema
const indexConfig = {
collection: "menuInfo",
contentField: "text",
vectorField: "embedding",
embedder: textEmbedding004,
};
const ai = genkit({
plugins: [vertexAI({ location: "us-central1" })],
});
const app = initializeApp({ credential: applicationDefault() });
const firestore = getFirestore(app);
export async function indexMenu(filePath: string) {
filePath = path.resolve(filePath);
// Read the PDF.
const pdfTxt = await extractTextFromPdf(filePath);
// Divide the PDF text into segments.
const chunks = await chunk(pdfTxt);
// Add chunks to the index.
await indexToFirestore(chunks);
}
async function indexToFirestore(data: string[]) {
for (const text of data) {
const embedding = (await ai.embed({
embedder: indexConfig.embedder,
content: text,
}))[0].embedding;
await firestore.collection(indexConfig.collection).add({
[indexConfig.vectorField]: FieldValue.vector(embedding),
[indexConfig.contentField]: text,
});
}
}
async function extractTextFromPdf(filePath: string) {
const pdfFile = path.resolve(filePath);
const dataBuffer = await readFile(pdfFile);
const data = await pdf(dataBuffer);
return data.text;
}
Firestore depends on indexes to provide fast and efficient querying on collections. (Note that "index" here refers to database indexes, and not Genkit's indexer and retriever abstractions.)
The prior example requires the embedding
field to be indexed to work.
To create the index:
Run the
gcloud
command described in the Create a single-field vector index section of the Firestore docs.The command looks like the following:
gcloud alpha firestore indexes composite create --project=your-project-id \ --collection-group=yourCollectionName --query-scope=COLLECTION \ --field-config=vector-config='{"dimension":"768","flat": "{}"}',field-path=yourEmbeddingField
However, the correct indexing configuration depends on the queries you make and the embedding model you're using.
Alternatively, call
ai.retrieve()
and Firestore will throw an error with the correct command to create the index.
Learn more
- See the Retrieval-augmented generation page for a general discussion on indexers and retrievers in Genkit.
- See Search with vector embeddings in the Cloud Firestore docs for more on the vector search feature.
Deploy flows as Cloud Functions
To deploy a flow with Cloud Functions, use the Firebase Functions library's
built-in support for genkit. The onCallGenkit
method lets
you to create a callable function
from a flow. It automatically supports
streaming and JSON requests. You can use the
Cloud Functions client SDKs
to call them.
import { onCallGenkit } from 'firebase-functions/https';
import { defineSecret } from 'firebase-functions/params';
export const exampleFlow = ai.defineFlow({
name: "exampleFlow",
}, async (prompt) => {
// Flow logic goes here.
return response;
}
);
// WARNING: This has no authentication or app check protections.
// See github.com/firebase/genkit/blob/main/docs/auth.md for more information.
export const example = onCallGenkit({ secrets: [apiKey] }, exampleFlow);
Deploy your flow using the Firebase CLI:
firebase deploy --only functions