Learning Structural SVMs with Latent Variables Chun-Nam John Yu [email protected] Thorsten Joachims [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 USA Abstract We present a large-margin formulation and algorithm for structured output prediction that allows the use of latent variables. Our proposal covers a large range of applica- tion problems, with an opt
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}