Cloudera World Tokyo 2012 ã§çºè¡¨ãããHadoopã®ã·ã¹ãã è¨è¨ã¨éç¨ã®ãã¤ã³ãã«é¢ããè³æã§ããRead less
Hadoopã®æ代ã¯çµãã£ããã¨ããè¨èª¬ããã¾ã«è¦ãããããã«ãªãã¾ããã ãã¡ããçµãã£ã¦ãªã©ãã¾ãããããããHadoopã¨ãã®åãå·»ãç°å¢ãå¤åããã®ã¯äºå®ã§ãã æ¬è¨äºã§ã¯ããã®å¤åãä½ãªã®ããæããã«ãããã®ä¸ã§ããªãHadoopã®æ代ã¯çµãã£ãã¨ãã主張ãå®æ ãæ£ãã表ãã¦ããªãã®ãã説æãã¦ããã¾ãã DISCLAIMER ç§ã¯Hadoopãä¸å¿ã¨ãããã¼ã¿åºç¤ãåãæ±ããã³ãã¼ãClouderaã®ç¤¾å¡ã§ãã ä¸ç«çã«æ¸ãããåªãã¾ãããæå±çµç¹ã«ãã£ã¦çºçãããã¤ã¢ã¹ã®å®å ¨ãªæé¤ãä¿è¨¼ãããã¨ã¯ã§ãã¾ããã 以ä¸ããäºæ¿ã®ä¸ãèªã¿é²ãã¦ãã ããã è¦ç´ ãã¼ã¿åºç¤ã¯ãHadoopã®ç»å ´ã«ããé常ã«å®ä¾¡ã¨ãªããä»ã¾ã§ã§ã¯ä¸å¯è½ã ã£ã大éã®ãã¼ã¿ãåãæ±ããããã«ãªãã¾ããã Hadoopã¯ãNoSQLãã¼ã ã®ä¸ãå¦çã¨ã³ã¸ã³ã§ããMapReduceã¨ã¹ãã¬ã¼ã¸ã§ããHDFSã
Datanami社ã«ãããã¼ã¿ãã¼ã¹å°é家ã¨ã®ã¤ã³ã¿ãã¥ã¼ã®çµæã«ããã¨ãHadoopãæ¡ç¨ãããä¼æ¥ã®å¤ãã¯ã失æããã¸ã§ã¯ãã«çµãã£ã¦ãããã¨ææãã¦ããã Snowflake Computing社CEO, Bob Mugliaæ°ã«ããã¨ãä»ã¾ã§Hadoopãæ¡ç¨ãã¦ã幸ãã«ãªã£ãä¼æ¥ã¯ã¿ãäºãç¡ãããä»å¾ãåºã¦ãããããªæ°é ãç¡ããã¨è¨ãåã£ã¦ããã ãã§ã«ãHadoopã¯å¤ãã®ä¼æ¥ã§ä½¿ãã...
ç±³GoogleãC/C++ã³ã¼ãããApache Hadoopãä¸ã§åããããã®ãã¬ã¼ã ã¯ã¼ã¯ãMapReduce for Cï¼MR4Cï¼ãããªã¼ãã³ã½ã¼ã¹ã§å ¬éãããHadoopã¯Javaãã¼ã¹ã§å®è£ ããã¦ãããããã®ãã¬ã¼ã ã¯ã¼ã¯ãå©ç¨ãããã¨ã§ãC/C++ã§æ¸ãããã¢ããªã±ã¼ã·ã§ã³ãç´æ¥Hadoopä¸ã§åãããã¨ãã§ããã Apache Hadoopã¯Javaã§ä½æãããããã¯ãã¼ã¿åæ£å¦çæè¡ãä»åå ¬éãããMapReduce for Cï¼MR4Cï¼ã¯Hadoopå®è¡ãã¬ã¼ã ã¯ã¼ã¯å ã§C/C++ã³ã¼ãããã¤ãã£ãã«åãããã¨ãã§ãããã¬ã¼ã ã¯ã¼ã¯æè¡ã§ããã¤ãã£ãã³ã¼ãã§å®è£ ãããã¢ã«ã´ãªãºã ãæã¤æ§è½ã¨æè»æ§ãå©ç¨ã§ããã¨ãã¦ããã ä½æãããã¢ããªã±ã¼ã·ã§ã³ã¯ããã¼ã«ã«ã®ãã¡ã¤ã«ã·ã¹ãã ãä»»æã®URIï¼Uniform Resource Identifierï¼ã«ã¢ã¯ã»ã¹ãããã¤ã
At the core, elasticsearch-hadoop integrates two distributed systems: Hadoop, a distributed computing platform and Elasticsearch, a real-time search and analytics engine. From a high-level view both provide a computational component: Hadoop through Map/Reduce or recent libraries like Apache Spark on one hand, and Elasticsearch through its search and aggregation on the other. elasticsearch-hadoop g
#cwt2013 Clouderaã®å¶å @shiumachi ã«ããããã°ãã¼ã¿ãã©ãããã©ã¼ã ã®æ§ç¯ã»éç¨ã«ã¤ãã¦ã®ã¹ã©ã¤ããå ¬éãã¾ãããHiveãã©ãæ±ããã¨ãã話ããããã¼ã ãµã¤ãºå¥ã®éç¨æ¹æ³ã¾ã§ç´¹ä»ãã¦ãã¾ã Read less
ãµã³ãã©ã³ã·ã¹ã³çº--Intelã¯ç±³å½æé2æ26æ¥ååãæå¾ è ã®ã¿ã®ã¤ãã³ãã§ç¬èªã®ãApache Hadoopããã£ã¹ããªãã¥ã¼ã·ã§ã³ãçºè¡¨ãããä»é±è¡ãããä»ç¤¾ã®çºè¡¨ã«å¯¾æãããã®ã ã Intelã§Architecture Groupã®ãã¤ã¹ãã¬ã¸ãã³ããåããBoyd Davisæ°ã¯ããããããã¯å¤§éã®ãã¼ã¿ãçæããæ代ã«ãããã¨è¿°ã¹ãããããããéè¦ãªã®ã¯ããããä½ãå¾ããã§ã¯ãªããï¼åæ°ï¼ Davisæ°ã¯ãããã°ãã¼ã¿ãæ°ãã大ããªæµè¡èªã¨ã¨ããããã¨ãã§ããã¨ããã ããããããã°ãã¼ã¿ã¯ããã¼ã½ãã©ã¤ãºãããå»çããã¨ãã«ã®ã¼ä¾çµ¦ä¸è¶³ã®ç®¡çã«è³ãã¾ã§ããã¸ãã¹ã¢ãã«ã社ä¼å ¨ä½ãå¤é©ããåãç§ãã¦ããã¨åæ°ã¯ä»ãå ããã EMCãHewlett-Packardãä»é±ã«å ¥ã£ã¦çºè¡¨ããããã«ãIntelã®ãã£ã¹ããªãã¥ã¼ã·ã§ã³ã®èæ¯ã«ããã®ã¯ãã»ãã¥ãªãã£ä¸ã®æ½å¨çãªè å¨ããã
注ç®ãéã¾ãããã¯ãã¼ã¿åéãæ¯ããæè¡ã®æ¬å½ã¯ããªã¼ãã³ã½ã¼ã¹ã®åæ£å¦çã½ããHadoopã ãããHadoopã¯ãGoogleãå±ãã大è¦æ¨¡ãã¼ã¿å¦çæ¹å¼ãå®è£ ãããªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ã§ããã©ãã¤ãï½ãã¿ãã¤ãç´ã®ãã¼ã¿ã®èç©ã»å¦çãå¾æã¨ãããIBMã¯Hadoopããã¼ã¹ã¨ãã製åããªãªã¼ã¹ãããªã©ã¯ã«ã¯ä¸»è¦è£½åExadataã¨Hadoopã®ã³ãã¯ã¿ãçºè¡¨ãã¦é£æºãæ¨ãé²ãã¦ããç¶æ³ã ã ããããä¸ãç±³å½ãã¥ã¼ã¨ã¼ã¯ã§11æ8æ¥ãã2æ¥éãHadoop World NYC 2011ããéå¬ããããHadoop Worldã¯ç¬¬3åç®ã®éå¬ã§ãææ°äºä¾ãæè¡ã«é¢ããæ å ±ãä¸åã«éã¾ãã¤ãã³ãã¨ãã¦ç¥ããã¦ããã27ã«å½ãã1400å以ä¸ãéã¾ãã60ãè¶ ããè¬æ¼ãç¹°ãåºããããã ãã®ã¤ãã³ãã«ããã¦ãNTTãã¼ã¿ã¯ãHadoop's Life in Enterprise Syste
Facebookã¯å¤§è¦æ¨¡ãªãã¼ã¿å¦çã®åºç¤ã¨ãã¦HBaseãå©ç¨ãã¦ãã¾ãããªãFacebookã¯HBaseãç¨ãã¦ããã®ããã©ã®ããã«å©ç¨ãã¦ããã®ã§ããããï¼ 7æ1æ¥ã«é½å ã§è¡ãããåå¼·ä¼ã§ãFacebookã®ã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ã§ããã¸ã§ããµã³ã»ã°ã¬ã¤ï¼Jonathan Grayï¼æ°ã«ãã解説ãè¡ããã¾ããã 解説ã¯ã»ã¼ã¹ã©ã¤ãã®å 容ãã®ã¾ã¾ã§ãããå½æ¥ä½¿ãããæ¥æ¬èªè¨³ãããã¹ã©ã¤ããå ¬éããã¦ããã®ã§ããã¤ã³ãã¨ãªããã¼ã¸ãç´¹ä»ãã¾ãããã Realtime Apache Hadoop at Facebook ãªããªã¢ã«ã¿ã¤ã ãã¼ã¿ã®åæã«ãHadoop/HBaseã使ãã®ãï¼ MySQLã¯å®å®ãã¦ããããåæ£ã·ã¹ãã ã¨ãã¦è¨è¨ããã¦ãããããµã¤ãºã«ãä¸éããããä¸æ¹ãHadoopã¯ã¹ã±ã¼ã©ãã«ã ãããã°ã©ãã³ã°ãé£ãããã©ã³ãã ãªæ¸ãè¾¼ã¿ãèªã¿è¾¼ã¿ã«åãã¦ããªãã Faceb
第5åã¨ã®ãã¨ã§ãããèªåã¯åãã¦åå ãã¾ããã ããããHadoopã¨ã¿ã¤ãã«ã«ã¤ãã¤ãã³ãã¸è¡ã£ãã®ã¯ãåãã¦ã§ãããããã¾ã§é å·»ãã«è¦ã¦ãã¾ããããä½ããè²ã ãã£ã¦åå ãããã¨ã«ã zusaar.com - zusaar ãªã½ã¼ã¹ããã³æ å ± 2011/06/29_Hadoopãä¸å¿ã¨ããåæ£ç°å¢ã§ã®éçºæ¹æ³è«ã»ã¢ããªã³ã°ã»è¨è¨ææ³çã«ã¤ãã¦ã®åº§è«ä¼(第5åï¼ #hadoopmodeling - Togetter ãã£ãããªã®ã§ãã¼ããä¸ãã¦ããã¾ãã 1. ãééã·ã¹ãã ã¸ã®èªãã [twitter:@ayasehiro]ãã çºè¡¨ã®ç®çã¯ããå¦çã®æ¹ã«ééã·ã¹ãã ã«èå³ãæã£ã¦ããããã¨ï¼ãã¨ã®ãã¨ã ééã·ã¹ãã ã®éçºã®ã話 ã·ã¹ãã ã¯ä¸åº¦ä½ã£ããé·ã使ã èç¨å¹´æ°10å¹´ä»¥ä¸ éçºã®ã¹ãã³ãé·ã é·ãã¨ãã§5å¹´ããã 製é ã«æéããããããªã ååãéçºãååãè©¦é¨ éçº
ç±³Clouderaã¯4æ12æ¥ï¼ç±³å½æéï¼ãHadoopãã£ã¹ããªãã¥ã¼ã·ã§ã³ãClouderaâs Distribution including Apache Hadoop v3ï¼CDH3ï¼ãã®ä¸è¬æä¾ãéå§ãããClouderaã®Webãµã¤ãããå ¥æã§ããã CDHã¯ã大è¦æ¨¡ãªãã¼ã¿çµ±åã¨åæ£ã³ã³ãã¥ã¼ãã£ã³ã°ã®ããã®ãã¬ã¼ã ã¯ã¼ã¯æè¡ãApache Hadoopããä¸æ ¸ã¨ãããã¼ã¿ç®¡çãã©ãããã©ã¼ã ãçµ±åãããã£ã¹ããªãã¥ã¼ã·ã§ã³ãäºåæ¤è¨¼ã»çµ±åæ¸ã¿ã§ãTwitterãGrouponãªã©ã®ä¼æ¥ãå°å ¥ãã¦ããã¨ãããã©ã¤ã»ã³ã¹ã¯Apache Licenseã ææ°çã§ã¯ãåãã¼ã¸ã§ã³ã§çµ±åãã¦ãããã¼ã¿ã¦ã§ã¢ãã¦ã¹ã®Hiveããã¼ã¿ããã¼ã®Pigãªã©ã«å ããFlumeãSquoopãHueãZookeeperãHBaseãªã©ã®ããã±ã¼ã¸ãæ°ãã«å«ã¿ãæ¨æºAPIã«ããå ¨ã¦ã®ã³ã³ãã¼ãã³
ãããã®æã®è©±é¡ã¯åºå°½ãããæãããã¾ãããæè¿Hadoopã«ã¤ãã¦èãããã¨ãå¤ãã®ã§ãã¨ã³ããªã«ãã¦ã¿ã¾ãããªããããã§ã¯ãã¼ã·ãã¯ãªMapReduce+HDFSã®ãã¨ãHadoopã¨å¼ã¶ãã¨ã«ãã¾ãã Hadoopã¨ã¯Hadoopã¨ã¯è¨ããã¨ç¥ããGoogleã®MapReduce/GFSã®ãªã¼ãã³ã½ã¼ã¹ã®ã¯ãã¼ã³ã§ããMapReduceã§ã¯ããã°ã©ãã¯Mapã¨Reduceã¨ãã2ã¤ã®é¢æ°ãæ¸ãã ãã§ã並ååæ£å¦çããããã¨ãã§ãã¾ããããã¯(1) ãã¼ã¿ãå®éã«æã¤ãã·ã³ã«ããã°ã©ã ãé å¸ãã (2) Mapã¨Reduceãã¤ãªãShuffleãã§ã¼ãºã§ãã¼ãã°ã«ã¼ãåãã¦ã½ã¼ãããã(3) é害æã®ãã§ã¼ã«ãªã¼ãã¼ãã¬ããªã±ã¼ã·ã§ã³ãã¨ãã£ãå¦çããã¬ã¼ã ã¯ã¼ã¯å´ãåãæã¤ãã¨ã«ãã£ã¦ãããã°ã©ãå´ã®è² æ ãæ¸ãããã®ã§ããGFSã«å¯¾å¿ããHDFSã«ã¯ãã¡ã¤ã«ãã¯ã©ã¹ã¿ã«åæ£ãã¦ä¿å
ãã¤ã¯ãã½ããã¯ãWindows HPC Serverã®ã¯ã©ã¹ã¿ä¸ã§åä½ãããDryadãã®ãã¼ã¿å ¬éãéå§ãããã¨ãçºè¡¨ãã¾ããã Dryad Beta Program Starting - The Windows HPC Team Blog - Site Home - TechNet Blogs Dryadã¯ããªã¼ãã³ã½ã¼ã¹ã¨ãã¦å ¬éããã¦ãã大è¦æ¨¡ä¸¦åãããå¦çã½ããã¦ã§ã¢ã®Hadoopã«å¯¾æãããã®ã¨ãããã¦ãã¾ããHadoopã¯ããã¾ã¾ã§é«ä¾¡æ ¼ãªãã¼ãã¦ã§ã¢ã¨ã½ããã¦ã§ã¢ãå¿ è¦ã¨ããã¦ãããã¸ãã¹ã¤ã³ããªã¸ã§ã³ã¹ãªã©ã®å¤§éãã¼ã¿åæããå®ä¾¡ãªãã¼ãã¦ã§ã¢ã®ã¯ã©ã¹ã¿ã¨ãªã¼ãã³ã½ã¼ã¹ã¨ããç ´å£çãªä½ä¾¡æ ¼ã¨é«ãå¦çè½åãããããããã¨ã§æ³¨ç®ããã¦ãã¾ãã Dryadã¨Hadoopã®éãã¯ï¼ çºè¡¨ã«ããã¨ãä»åãã¼ã¿å ¬éãããã®ã¯ãWindows HPC Server 2008 R2 S
Hadoopã½ã¼ã¹ã³ã¼ããªã¼ãã£ã³ã°ç¬¬6å : ATNDãData Intensive Text Processing with MapReduce ãã®2ãã¨ãããã¨ã§ãååã«å¼ãç¶ããã®æ¬ã«ã¤ãã¦è©±ããã¦ããã ãã¾ãããHadoopreading06 data intensive4View more presentations from nokuno.以ä¸ãä»ã®äººã®çºè¡¨ã¡ã¢ã§ãã Hadoop World 2010å ±å NTTãã¼ã¿å±±ä¸ãã åå è 900人ï¼å»å¹´ã®2åï¼ï¼ãBIé¢ä¿ãç®ç«ã£ã¦ããï¼ eBay: Ganglia, Nagios, HUE, Oozie, Mahout, Pig, Hive, SAML,... AOL: åºåãæ¤ç´¢ãã³ã³ãã³ãã«å©ç¨ãMahoutã§ã¬ã³ã¡ã³ãã¨ã Intelã®ãã³ããã¼ã¯ï¼LZOãHyperThreadingã®æ©æµ GE:TwiterãYou
NTTãã¼ã¿ãããªã¼ãã³ã½ã¼ã¹ã®åæ£ãããå¦çã½ãããHadoopãã使ã£ãã·ã¹ãã æ§ç¯äºæ¥ã§ã2012年度ã«100ååã売ãä¸ããç®æ¨ã§ãããã¨ãæããã«ãªã£ãã2010å¹´10æ12æ¥ï¼ç±³å½æéï¼ã«ç±³å½ãã¥ã¼ã¨ã¼ã¯ã§éå¬ããããHadoop World 2010ãã§ãNTTãã¼ã¿ã®å±±ç°ä¼¸ä¸å¸¸åãçºè¡¨ããã2012年度ã¾ã§ã«30件ã®ã·ã¹ãã æ§ç¯ã100件ã®ãµãã¼ãå¥ç´ãç®æãã Hadoopã¯åæ£å¦çã·ã¹ãã ãæ§ç¯ããããã®ããã«ã¦ã¨ã¢ãä¸è¬çãªPCãµã¼ãã¼100å°ã§ãããã200Tãã¤ãã®ãã¼ã¿ã解æã§ãã大åãã¼ã¿åæã·ã¹ãã ãæ§ç¯ã§ãããNTTãã¼ã¿ã¯2010å¹´7æã«ãHadoopã使ã£ãã·ã¹ãã æ§ç¯ã»éç¨æ¯æ´ãµã¼ãã¹ãBizXaaSã¯ã©ã¦ãæ§ç¯ãµã¼ãã¹ Hadoopæ§ç¯ã»éç¨ã½ãªã¥ã¼ã·ã§ã³ããéå§ã10æã«ã¯Hadoopå°æ¥ãã³ãã£ã¼ã®ç±³ã¯ã©ã¦ãã©ã¨ææºããã¯ã©ã¦ãã©è£½ã®Hadoo
$ /usr/java/latest/bin/javac -cp hadoop-0.18.0-core.jar sample/*.java $ /usr/java/latest/bin/jar cvf charcount.jar sample/*.class ãããã§ã¹ãã追å ããã¾ããã sample/CharCount.class ã追å ä¸ã§ãã(å ¥ = 1801) (åº = 843)(53% å縮ããã¾ãã) sample/MapClass.class ã追å ä¸ã§ãã(å ¥ = 1853) (åº = 755)(59% å縮ããã¾ãã) sample/Reduce.class ã追å ä¸ã§ãã(å ¥ = 1530) (åº = 607)(60% å縮ããã¾ãã) ãµã³ãã«ãå®è¡ããã«ã¯ã次ã®ããã«ãã¾ãããµã³ãã«ãåä½ãããå ´åã«ã¯ãä¸åº¦ãinputããã£ã¬ã¯ããªå ã®ãã¡ã¤ã«ããã¹ã¦åé¤ãã¦ã
ååã¯Googleã®åºç¤æè¡ã¨ããã«å¯¾å¿ãããªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ã¨ãã¦ãHadoop & hBaseãç´¹ä»ãã¾ããï¼å³1 åç §ï¼ãä»åã¯Hadoopã1å°ã«ã¤ã³ã¹ãã¼ã«ãããµã³ãã«ããã°ã©ã ãåããã¾ãã次ã«HDFSã¨MapReduceã®ã¢ã¼ããã¯ãã£ã解説ãã¾ããæå¾ã«ãµã³ãã«ããã°ã©ã ã®ã½ã¼ã¹ã³ã¼ãã解説ãã¾ãã 2. Hadoopã®æ¦è¦ Hadoopã¯ä¸»ã«Yahoo! Inc.ã®Doug Cuttingæ°ã«ãã£ã¦éçºãé²ãããã¦ãããªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ã§ãGoogleFileSystemã¨MapReduceã¨ããGoogleã®åºç¤æè¡ã®ãªã¼ãã³ã½ã¼ã¹å®è£ ã§ããHadoopã¨ããååã¯éçºè ã®åä¾ãæã£ã¦ããé»è²ã象ã®ã¬ãããã¿ã®ååã«ç±æ¥ãã¦ãã¾ããHadoopã¯HDFSï¼Hadoop Distributed File Systemï¼ãHadoop MapReduce F
æ¥çããã ã®ã¨ã³ã¿ã¼ãã©ã¤ãº Hadoop ä¼æ¥ Cloudera ã«å ¥ç¤¾ãã¾ãã http://www.cloudera.co.jp/ ä»å¹´ã®6æã«ããå¹³æï¼ï¼å¹´åº¦ ç£å¦é£æºã½ããã¦ã§ã¢å·¥å¦å®è·µäºæ¥å ±åæ¸ãã¨ããããã¥ã¡ã³ã群ãçµç£çããå ¬è¡¨ããã¾ããã ãã®ãã¡ã®ä¸ã¤ã«ãNTTãã¼ã¿ã«å§è¨ãããHadoopã«é¢ããå®è¨¼å®é¨ã®å ±åæ¸ãããã¾ããã®ã§ãä»æ´ãªããèªãã§ã¿ããã¨ã«ãã¾ããã Hadoopçéã®äººã¯ããã¿ããªã¨ã£ãã«èªãã§ãã®ããããã¾ãããã©ã http://www.meti.go.jp/policy/mono_info_service/joho/downloadfiles/2010software_research/clou_dist_software.pdf ãé«ä¿¡é ¼ã¯ã©ã¦ãå®ç¾ç¨ã½ããã¦ã§ã¢éçºï¼åæ£å¶å¾¡å¦çæè¡çã«ä¿ããã¼ã¿ã»ã³ã¿ã¼é«ä¿¡é ¼åã«åããå®è¨¼äºæ¥ï¼ãã¨ãã
1. Yahoo! JAPAN ã§ã® Hadoop å©ç¨ã«ã¤ã㦠ã¤ãã¼æ ªå¼ä¼ç¤¾ R&D çµ±æ¬æ¬é¨ åç°ä¸æãå¤å®®é½æ 2010 å¹´ 8 æ 4 æ¥ 2. èªå·±ç´¹ä» åç°ä¸æ ï¼ããã ããã£ããï¼ R&D çµ±æ¬æ¬é¨ãã©ãããã©ã¼ã éçºæ¬é¨æ¤ç´¢éçºé¨éçºï¼ R&D çµ±æ¬æ¬é¨ããã³ãã¨ã³ãéçºæ¬é¨ã¢ããªã±ã¼ã·ã§ã³éçºé¨éçºï¼ï¼å ¼ï¼ R&D çµ±æ¬æ¬é¨ãã©ãããã©ã¼ã éçºæ¬é¨è¦ç´ æè¡éçºé¨éçºï¼ï¼å ¼ï¼ 2008 å¹´ã«ã¤ãã¼æ ªå¼ä¼ç¤¾ã«å ¥ç¤¾ æ¤ç´¢ãµã¼ãã¹æ§ç¯ãã©ãããã©ã¼ã ï¼ ABYSS ï¼ã§ Hadoop é¨åãæ å½ããã¨ã³ã¸ã㢠ç»åå¦çãå°å³æ¤ç´¢ãå°åãã©ãããã©ã¼ã ã§ã Hadoop ã«é¢ããéçºãçµé¨ TechBlog 㧠Hadoop ã«é¢ããè¨äºãå·ç 3. èªå·±ç´¹ä» å¤å®®ãé½æ ( ãã¿ãããããã ) R&D çµ±æ¬æ¬é¨ ãã©ãããã©ã¼ã éçºæ¬é¨ã»ã³ãã©ã«éçº 2 é¨ éçº 3 200
æè¿ãç±³å½ã§éå¬ãããã¯ã©ã¦ãã³ã³ãã¥ã¼ãã£ã³ã°é¢é£ã®ã«ã³ãã¡ã¬ã³ã¹ãéèª/ããã°è¨äºãªã©ã§ãBig Dataãã¨ããåèªãç®ã«ããæ©ä¼ãå¢ãããBig Dataã¨ã¯æåéãã巨大ãªãã¼ã¿ãã¨ããæå³ã ããã¾ããHadoopãã®ãããªæ°æè¡ã«æ³¨ç®ãéã¾ãã®ã¯ã巨大ãã¼ã¿ã¨æ ¼éããä¼æ¥ãå¢ãã¦ããããã ã¨ããã Hadoopã«ã¤ãã¦ã¯ãããã説æã¯ä¸è¦ããç¥ããªããã念ã®ããã«ãããããã¦ããããHadoopã¨ã¯ãç±³ã°ã¼ã°ã«ãéçºããåæ£å¦çã½ãããGoogle File Systemï¼GFSï¼ãã¨ãMapReduceãã模ãããªã¼ãã³ã½ã¼ã¹ã½ããã ãè¤æ°å°ã®å®ä¾¡ãªPCãµã¼ãã¼ãé£æºãããæ°åãã©ï½æ°ãã¿ãã¤ãã«åã¶ãã¼ã¿ãé«éã«å¦çã§ããï¼é¢é£è¨äºï¼ã¤ãã¼ãå¤ãå§ããHadoopï¼ã æ¥çµã³ã³ãã¥ã¼ã¿2010å¹´4æ28æ¥å·ã®ã¬ãã¼ãè¨äºããªã¢ã«ã¿ã¤ã ã«è¿ã¥ããããå¦çãã§ãåãä¸ããããã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}