è¬ç¾©ãã¼ ã è¬ç¾©äºå® ã·ã©ã㹠第1å 5æ18æ¥ ã©ã ãè¨ç®ã®æ§æè« è¬ç¾©ã¡ã¢ 第2å 5æ25æ¥ ã©ã ãè¨ç®ã®æ§æè«(ç¶) 第3å 6æ1æ¥ åä»ã©ã ãè¨ç® è¬ç¾©ã¡ã¢ 第4å 6æ15æ¥ åä»ã©ã ãè¨ç®(ç¶) è¬ç¾©ã¡ã¢ 6æ15ã«ã¬ãã¼ã課é¡ãé ãã¾ããï¼ãåã¯7æ17 æ¥ï¼ä»¥ä¸ã®è¿½è¨ãèªãã§ä¸ããï¼ ã¬ãã¼ã課é¡ã®è¿½è¨ åA3ã§ã¯ï¼predã¯1ãå¼ãé¢æ°ã®ãã¨ã§ãã(n â n-1)ï¼ åBã§ã¯ï¼éä¸é¢æ° â éä¹é¢æ° (c!ã¨ãã¦å®ç¾©ãããã®)ï¼ æçµæ´æ°2007.6.15
Coqåèè³æ æç§æ¸ "Interactive Theorem Proving and Program Development: Coq'Art: The Calculus of Inductive" Springerããåºçããã¦ããCoqæ¬ãè¯ãæ¬ãªã®ã ãå¤æ®µãé«ãã Certified Programming with Dependent Types (http://adam.chlipala.net/cpdt/) Harvardã®ææ¥ã§ä½¿ç¨ (PDF 360ãã¼ã¸ç¨åº¦)ãå®æçã«æ¹è¨ããã¦ããã (Latest 2010/2/3) CPDTã¯é¢æ°åè¨èªããã°ã©ãã«ã¨ã£ã¦Coqãç解ããããããããã¹ãã ã¨æãã¾ãã èªãæã¯ãCertified Programming with Dependent Typesé¢ä¿ããåç §ã®äºã ãã¥ã¼ããªã¢ã« The Coq Proof Assi
Formal Methods Forum å½¢å¼ææ³ã«ã¤ãã¦åºãæ·±ãç 究ããä¼ã§ãã åå¼·ä¼ åèè³æCoqåå¼·è³æ:Certified Programming with Dependent Types Event-Båå¼·è³æ:Slides and Rodin Platform archives of the developments corresponding to chapters of the books Coq Coqã¤ã³ã¹ãã¼ã« Coqåèè³æ Certified Programming with Dependent Typesé¢ä¿ Coqå½é¡è«çã®è¨¼æ Coqã§æ°ç¬ SPIN SPINã¤ã³ã¹ãã¼ã« ãªã³ã¯éï¼é¢é£ããããªè©±ã¸ã®ãªã³ã¯é
ãã®ç¬¹ç°ããã«æ¥½ããã§ããã ãã¦å æ è³æ¥µãä¸åã ããç®ã«ããã£ããã¨ãããã¾ãã ç 究æ¥è¨ï¼December 9 http://d.hatena.ne.jp/next49/20080214/p1 大å¤æ¥½ããã£ãã®ã ããã©ï¼ããã§å¤§ç¬ããã¦ãã¾ã£ãï¼ å ´åã«ãã£ã¦ã¯ãããããã¸ãã§ã¹ãã¼ã«è¡ãã®ãè¯ããå çã«çµ¶ææãä¸ããããä¸ã«ãåã¯æ¥½ããã¨ããä¸æ両å¾ã®ã¢ã¤ãã¢ã ã ããããããæ¬å½ã«ãããããç§ã¯3æ¥ã¯å¯è¾¼ã¿ã¾ããã ã§ãåãã笹ç°ãããæ¥è¨ã§ä»¥ä¸ã®ããã«ã¤ã¶ãããã¦ãã¾ããã®ã§ãç§ã®è«æã¡ã¿ãã¼ã¿ç®¡çæ¹æ³ããç´¹ä»ã ç 究æ¥è¨ï¼December 2 æç®ãªã¹ããã¾ããã«ç®¡çãããã¨æãã®ã ããã©ï¼ã©ãããã°èªååãç°¡åã«ãªããï¼ å¹´ä»£é ã¨ãï¼æ»èªä»ãè«æèªã¨ãï¼å½éä¼è°ã¨ãï¼ããããã®ãç°¡åã«ç®¡çããæ¹æ³ï¼ ã¯ããã« ã¡ãªã¿ã«å ¨ç¶ãèªååãããã¾ãããç§ã¯ãLaTeXã§è«æãæ¸ãã®ã§B
[ ãã¼ã | è¬ç¾© ] 2009年度å¾æã»æ°ç解æã»è¨ç®æ©æ°å¦ III (å æ¦è«III) ã¬ãã¼ãèª²é¡ ããã°ã©ãã³ã°èª²é¡ æåºæé 2010å¹´1æ15æ¥(é) ã¬ãã¼ãèª²é¡ æåºæé 2010å¹´2æ8æ¥(æ) è¬ç¾©äºå® ã·ã©ãã¹ (ä¿®æ£ç) 第1å 10æ7æ¥ Objective Camlããã°ã©ãã³ã°ã®åºç¤: å®ç¾©ã¨å è¬ç¾©ã¡ã¢ è³æ Emacsã§OCamlã使ã (ä¿®æ£ç) 第2å 10æ14æ¥ å¤ç¸åã¨æ±é¢æ° 第3å 10æ21æ¥ é¢æ°ã°ã©ãã®æç» é¢æ°æç»ã©ã¤ãã©ãªã¼ plot.ml plot.mli å帰é¢æ° 10æ28æ¥ã¯åºå¼µã§ä¼è¬ 第4å 11æ4æ¥ ãªã¹ãã¨æ§é ç帰ç´æ³ 第5å 11æ11æ¥ å帰çã¢ã«ã´ãªãºã 1 è¬ç¾©ã¡ã¢ 第6å 11æ18æ¥ å帰çã¢ã«ã´ãªãºã 2 è¬ç¾©ã¡ã¢ 第7å 11æ25æ¥ GUIã¨ã°ã©ãã£ãã¯ã¹ è¬ç¾©ã¡ã¢ 第8å 12æ2æ¥ Coqã§é¢æ°åã
The Coq Proof Assistant A Tutorial ãåèã«ãã¤ã¤ï¼Coq ã«ã¤ãã¦åå¼·ãã¦ãããã¨æã£ã¦ãã¾ãï¼ ã¾ãã¯ï¼Windows ã使ã£ã¦ãã人ã¯ï¼ããããï¼ coq-8.0pl3-win.exeããã¦ã³ãã¼ããã¦ï¼ããã«ã¯ãªãã¯ã㦠Coq (IDE ä»ã) ãã¤ã³ã¹ãã¼ã«ãã¦ããã¦ãã ããï¼ Coq 㯠Calculuc of Inductive Constructions ã¨ããè«çä½ç³»ã«åºã¥ããï¼å®ç証ææ¯æ´ç³»ãªã®ã ããã§ãï¼ å¯¾è©±çã«å½¢å¼çãªè¨¼æãæ§æãã¦ãããã¨ãã§ãã¦ï¼ããã«ãããï¼ãã®ã¾ã¾é¢æ°åããã°ã©ã ã®ä»æ§ã¨ãã¦æ±ããã¨ãã§ããã¨ã®ãã¨ï¼ ãã®ãã¥ã¼ããªã¢ã«ã§ã¯ Gallina ã¨å¼ã°ããåºæ¬çãªè¨èªä»æ§ã ããæ±ãããã§ï¼çºå±çãªæ å ±ã¯ Coq Reference Manual ã¨ã Coq'Art ãåç §ããï¼ã¨ã®ãã¨ï¼ ã¨ããããï¼C:\
2008-07-22 æ²ç¤ºæ¿ 2007-07-04 Sendmail/SMTP-AUTH Sendmail 2007-06-23 Coq/Install 2007-05-31 Coq/証æã®è£å´ Coq Coq/Proofs 2007-05-18 Coq/BackgroundTheory FrontPage MenuBar 証æã¹ããã㯠term construction ã§ãã â åçè«ãªã©ã§è¦æ £ããå½¢ã§ãã judgment ãÎ |- e : tããæãåºãã¦ãã ããã ããã¯ãåã³ã³ãã¯ã¹ã(å¤æ°âåã¸ã®ãããã³ã°)ã»é ã»åã® 3 é é¢ä¿ã§ããã ML ãªã©ã®åæ¨è«ã§ã¯ Π㨠e ãä¸ãã㨠t ãå°ãåºãã¦ããã¾ãããCoq ãªã©ã®å®ç証ææ¯æ´ç³»ã§ã¯ Π㨠t ãä¸ã㦠e ã(æåã§)å°ãåºããã¨ããå½¢ãã¨ãã¾ãã ããã term construction ã¨ããã¾ã
ååã¯èªç¶æ¼ç¹¹æ³ã«ã¤ãã¦ã¡ãã£ã¨æ¸ããã ãã§çµã£ã¦ãã¾ã£ãã®ã§ããï¼ä»åã¯ã¡ãã㨠Coq ã使ãã¾ã (ç¬) ã¨ããããï¼Coq ã®ã³ãã³ãã¨ï¼èªç¶æ¼ç¹¹æ³ã®æ¨è«è¦åã®å¯¾å¿ãæ¼ããã¦ããã¾ãããï¼ â å°å ¥ intro H. â é¤å» generalize (H1 H2); intro H3. ⧠å°å ¥ split ⧠é¤å» elim H; intros H1 H2. ⨠å°å ¥ã®å·¦å´ left. ⨠å°å ¥ã®å³å´ right. ⨠é¤å» elim H; [intro H1 | intro H2]. ¬ å°å ¥ intro H. ¬ é¤å» absurd A; try assumption. ã¨ã contradiction. ãããï¼ã¾ã ãããããã¾ããï¼ å¾ãåãæ¨è« apply ã¨ããããï¼å¯¾å¿è¡¨ã«ãã£ã¦ï¼ãããã¼ã«è¨¼æãè¡ã£ã¦ã¿ã¾ãããï¼ ä¾é¡ã¯ï¼ãã¥ã¼ããªã¢ã«ã®éãã«ï¼A ⧠B â B
This page is the home of a comparison between proof assistants by having a proof of the irrationality of the square root of two in seventeen different proof assistants. There is also something like a consumer test of these systems. Here are the source files of those proofs: HOL Light by John Harrison: hol.ml hol_alt.ml; HOL4 by Konrad Slindt: hol4.ml; ProofPower by Rob Arthan: proofpower.ml Mizar
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}