Code Archive Skip to content Google About Google Privacy Terms
大è¦æ¨¡çè¡ååãã®è¡åå解ã©ã¤ãã©ãªredsvdãå ¬éãã¾ããï¼ redsvd 大è¦æ¨¡çè¡ååãã®ç¹ç°å¤å解ã主æååæï¼åºæå¤å解ãè¡ãã©ã¤ãã©ãªredsvdãå ¬éãã¾ããï¼ ä¿®æ£BSDã©ã¤ã»ã³ã¹ã§å ¬éãã¦ããï¼ã³ãã³ãã©ã¤ã³ãã使ããä»ï¼C++ã©ã¤ãã©ãªãç¨æããã¦ãã¾ãï¼ ä¾ãã°ï¼è¡ã¨åæ°ããããã10ä¸ï¼éé¶ã®è¦ç´ ã1000ä¸ãããªãçè¡åã«å¯¾ããä¸ä½20ä½ã¾ã§ã®ç¹ç°å¤å解ãç´2ç§ã§å¦çãã¾ãï¼ ç¹ç°å¤å解ã¨ãï¼ä½¿ã£ã¦ããæè¡ã®è©³ç´°ã¨ãå¿ç¨äºä¾ã以ä¸ã«ç°¡åã«ç´¹ä»ãã¾ããã®ã§ï¼èå³ã®ããæ¹ã¯åèã«ãã¦ãã ããï¼ ç¹ç°å¤å解ã¨ã¯ ã¾ãè¡åãé©å½ã«å¾©ç¿ãã¾ãï¼è¡åXã®è»¢ç½®ãX^tã¨è¡¨ããã¨ã«ãã¾ãï¼ã¾ãIãåä½è¡åã¨ãï¼Oãå ¨ã¦ã®æåã0ã§ããé¶è¡åã¨ãã¾ãï¼ã¾ãï¼è¡åXX^t=Iã§ãããããªXãç´äº¤è¡åã¨å¼ã³ã¾ãï¼Xãç´äº¤è¡åã®æï¼Xvã¯ãã¯ãã«vãé·ããå¤ããã«å転ããã¾ãï¼ããã§ã¯
A C Library for Computing Singular Value Decompositions version 1.4 SVDLIBC is a C library written by Doug Rohde. It was based on the SVDPACKC library, which was written by Michael Berry, Theresa Do, Gavin O'Brien, Vijay Krishna and Sowmini Varadhan at the University of Tennessee. SVDLIBC is made available under a BSD License. SVDLIBC offers a cleaned-up version of the code with a new library inte
SVDLIBC is a C library based on the SVDPACKC library, which was written by Michael Berry, Theresa Do, Gavin O'Brien, Vijay Krishna and Sowmini Varadhan. SVDLIBC offers a cleaned-up version of the code with a sane library interface and a front-end executable that performs matrix file type conversions, along with computing singular value decompositions. Currently the only SVDPACKC algorithm implemen
Το bluebit.gr ÏαÏÎ¿Ï Ïιάζει ÏÎ»ÎµÏ ÏÎ¹Ï ÎµÎ¾ÎµÎ»Î¯Î¾ÎµÎ¹Ï Î±ÏÏ ÎºÎ¬Î¸Îµ ελληνική ÏειÏά ÏÎ¿Ï ÏαίζεÏαι ή ÏÏÏκειÏαι να ÏαιÏÏεί ÏÏα Îλληνικά ÏηλεοÏÏικά κανάλια. ÎÏικοινÏνήÏÏε μαζί μαÏ: info@bluebit.gr
Example with O-matrix /Mathlab O>(u,s,v)=svd(x) O>x { [ 1 , 2 ] [ 2 , 3 ] [ 3 , 4 ] } O>[u,s,v]=svd(x) O>u { [ -0.338098 , 0.847952 , 0.408248 ] [ -0.550649 , 0.173547 , -0.816497 ] [ -0.763201 , -0.500857 , 0.408248 ] } O>s { [ 6.54676 , 0 ] [ 0 , 0.374153 ] [ 0 , 0 ] } O>v { [ -0.569595 , -0.821926 ] [ -0.821926 , 0.569595 ] } O>[e,d]=eigen(x'x) O>[e,d]=eigen(x'*x) O>e { [ (0.569595,0) , (-0.821
SVD decomposition The singular value decomposition of MxN matrix A is its representation as A = U W VT, where U is an orthogonal MxM matrix, V - orthogonal NxN matrix. The diagonal elements of matrix W are non-negative numbers in descending order, all off-diagonal elements are zeros. The matrix W consists mainly of zeros, so we only need the first min(M,N) columns (three, in the example above) of
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}