æ±äº¬å¤§å¦æ·±å±¤å¦ç¿ï¼Deep Learningåºç¤è¬åº§2022ï¼https://deeplearning.jp/lectures/dlb2022/ ãæ·±å±¤å¦ç¿ã¨èªç¶è¨èªå¦çãã®è¬ç¾©è³æã§ãã

æå¸«ããå¦ç¿ æ¦è¦ å ¥åå¤ããä½ãããã®äºæ¸¬ããããå ´åãèãã¾ã. äºæ¸¬ããå¯¾è±¡ã®æ£è§£ãã¼ã¿ãäºåã«å¾ãããå ´åã å ¥åå¤ããæ£è§£ãã¼ã¿ãåºåããã¢ãã«ãå¦ç¿ããææ³ãæå¸«ããå¦ç¿ã¨è¨ãã¾ã. 主ãªã¿ã¹ã¯ ä½ãå ¥åãã¦ãä½ãåºåãããã§ã¿ã¹ã¯ãåé¡ããã¾ã. 代表çãªãã®ã«ä»¥ä¸ãæãããã¾ã æç³»åäºæ¸¬: ç¾å¨ä»¥åã®æç³»åãã¼ã¿ â æªæ¥ã®æç³»åãã¼ã¿ ç»ååé¡: ç»å â ã©ãã« ç©ä½æ¤åº: ç»å â ç©ã®ä½ç½®ã¨ç¨®é¡ ã»ã°ã¡ã³ãã¼ã·ã§ã³: ç»åããã¯ã»ã«åä½ã§åå² æç« åé¡: æç« â ã©ãã« æ©æ¢°ç¿»è¨³: ããè¨èªã®æç« â å¥ã®è¨èªã®æç« æç³»åäºæ¸¬ ç¾å¨ä»¥åã®ãã¼ã¿ããå°æ¥ã®ãã¼ã¿ãäºæ¸¬ãã¾ã. å®ç¨ä¾ æ ªä¾¡äºæ¸¬ ç½å®³äºæ¸¬ èªåè»ã®äºæ 鲿¢ã·ã¹ãã 主è¦ãªã¢ã«ã´ãªãºã èªå·±å帰ã¢ãã«ï¼ARã»MAã»ARMAã»ARIMAï¼ æç³»åéã®é¢ä¿ãæ°å¦çã«å®éåãã¢ãã«åãã. 卿æ§ã®ããã
ããã«ã¡ã¯ã å¨å® ã®æ©ä¼ãå¢ãã¦ä»¥æ¥Youtubeãè¦ãæ©ä¼ãå¢ããæ©æ¢°å¦ç¿ãªã©ãåå¼·ã§ãããã£ã³ãã«ãããã¤ãæ¢ãã¦ã¯è¦ã¦ãã¾ãããæ¢ããä¸ã§ããã£ãã¨æã£ããã®ãã¡ã¢ãã¦ããã®ã§ããããã£ãããªã®ã§å ¬éãããã¨æãã¾ããæ¥æ¬èªã®ã½ã¼ã¹ããããã®ã®ã¿å¯¾è±¡ã«ãã¦ããããããç¡æã§ããã®ãï¼ãã¨æã£ããã£ã³ãã«ãç´¹ä»ãããã¨æãã¾ãã主観ã§ä»¥ä¸ã®ã¬ãã«ã«åãã¾ãããããã¾ã§åèç¨åº¦ã«ãé¡ããããã¾ãã åºæ¬ï¼Pythonã触ã£ã¦ã¿ã人 Pythonã®èª¬æã»åããæ¹ãªã©ã解説ãã¦ãã¦ãåç»ã«ãã£ã¦ã¯è¸ã¿è¾¼ãã å 容ã«ãªã å¿ç¨ï¼ã¢ã«ã´ãªãºã ã使ãããªããã人 ãmodel.fit(X, y)ãã¦åããã¦ã¿ãããããè¸ã¿ãã¿ãPythonèªä½ã®èª¬æã¯å°ãªã çºå±ï¼ç ç©¶éçºãããã人 ææ°ã®ææ³ã®ä»çµã¿ã®çè§£ãªã©ã主ç¼ã§ãããPythonã®è§£èª¬ã¯ã»ã¼ç¡ã ããããããã®ãã£ã³ãã«ãããã¾ããããã²ã³
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations, and the website renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better. We are actively maintaining this repo and adding new implementations. for updates. Translations English (original)
ããã³ã½ã«ãã¨ã¯ï¼ ãã£ã¼ãã©ã¼ãã³ã°ã§ã¯ãè¤éãªãã¥ã¼ã©ã«ãããã¯ã¼ã¯ä¸ã§è¨å¤§ãªæ°ã®æ°å¤ãé§ãå·¡ã£ã¦ãã¾ããã³ã³ãã¥ã¼ã¿ã¯ãããã®æ°å¤ãåå¥ã«æ±ããã¨ãã§ãã¾ãã ãããããã®ã¾ã¾ã§ã¯ãã¥ã¼ã©ã«ãããã¯ã¼ã¯å ã§ã®è¨ç®ãçè«åã§ãã¾ããããä½ããããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãã¨ã«æ±ãæ°å¤ã«é¢ããä½ãããã®å ±éèªèããªããã°ãã»ãã®äººéãããã°ã©ã ã®ã³ã¼ããèªãã§ãä½ãæ¸ãã¦ããã®ãåããããæè¡ã®å¿ç¨ãçºå±ã«ã¤ãªãã«ãããªãã¾ããããã§ä½¿ãããããã«ãªã£ãæ°å¦çæ¦å¿µãããã³ã½ã«ãã§ããã ãã³ã½ã«ã¨ããæ¦å¿µã¯æ°å¦çã«çè§£ããã«ã¯é£è§£ãªãã®ã§ãããç§ãã¡ããè¦ãåã«ã¯ãæ²¢å±±ã®æ°å¤ã®éã¾ããã¨ãã¦è¦ãã¾ãã åºæ¬çã«ã¯æ²¢å±±ã®æ°å¤ãéãã¦ã1ã¤ã®æ å ±ãã¨ãã¦è¡¨ç¾ããã®ããã³ã½ã«ã§ãä¾ãããªããã²ã¼ã ãã£ã©ã¯ã¿ã¼ã®ç¹å¾´ãç¡æ°ã®ã¹ãã¼ã¿ã¹ã§è¡¨ãããããªãã®ã§ãã表ç¾ãããæ å ±ã¯ããã£ã©ã¯ã¿ã¼ãã¨ãã1ã¤
ããã«ã¡ã¯ï¼ DSOC ç ç©¶éçºé¨ã®é»æ¨è£é·¹ã§ãï¼ å¤ã®è¨ªããæãã¤ã¤ããæè¿ã§ããï¼ã©ã³ãã³ã°ãã¯ããã¾ããï¼ å½¢ããå ¥ããã¨æãï¼ãã£ã¡ãããã·ã¥ã¼ãºã¨ã¦ã§ã¢ãæããã®ã§ããï¼ãªãã¨ã1é±éã¯ç¶ãã¦ããæ°åãè¯ãã§ãï¼ ã¾ã ã¾ã 2, 30åèµ°ãã ãã§ããããã«ãªã£ã¦ãã¾ãã¾ããï¼ãããã¯å¥åº·å¤§éç¥ã«ãªããã¨æã£ã¦ãã¾ãï¼ ãã¦ï¼ãã®é£è¼ã§ã¯ï¼èªåã®åå¼·ã»å¾©ç¿ãå ¼ãã¦ï¼ãããã¯ã¼ã¯ãã¼ã¿ã«ã¾ã¤ããï¼çµ±è¨ï¼è§£æãæ°ã®åãã¾ã¾ã«ç´¹ä»ãã¦ãã¾ãï¼ ååã®è¨äºã§ã¯ï¼ã°ã©ãã©ãã©ã·ã¢ã³ã»ã°ã©ããã¼ãªã¨å¤æã«ã¤ãã¦ç°¡åã«ãããããã¾ããï¼ ãã¾ãçè«ãã¢ãã«ã®ç´¹ä»ã°ãããç¶ãã¦ãé¢ç½ããªãã®ã§ï¼ä»åã®è¨äºã§ã¯ãã¸ãã¹å¿ç¨ã®äºä¾ç´¹ä»ããããã¨æãã¾ãï¼ å ·ä½çã«ã¯ï¼Uber ã«ããã GNN ã®é©ç¨äºä¾ã2ã¤ã»ã©åãä¸ãããã¨ã«ãã¾ããï¼ ç§ãã¡ã®çæ´»ã«ããã£ããæµ¸éãã Uber ã UberEat
æ¦è¦ ãã®è¬ç¾©ã§ã¯ã深層å¦ç¿ã表ç¾å¦ç¿ã®ææ°æè¡ã«ã¤ãã¦ãä¸»ã«æå¸«ããã»æå¸«ãªã深層å¦ç¿ãåãè¾¼ã¿ææ³ãè·é¢å¦ç¿ãç³ã¿è¾¼ã¿ã»å帰åãã¥ã¼ã©ã«ãããã¯ã¼ã¯ããããããç¨ããã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ãèªç¶è¨èªå¦çãé³å£°èªèãªã©ã®å¿ç¨æè¡ãåãæ±ãã¾ãã ãã®è¬ç¾©ã¯ãDS-GA 1001 Intro to Data Scienceããããã¯å¤§å¦é¢ã¬ãã«ã®æ©æ¢°å¦ç¿ç§ç®ããã§ã«å±¥ä¿®ãã¦ãããã¨ãåæã¨ãã¾ãã è¬ç¾© å¡ä¾: ð¥ ã¹ã©ã¤ã, ð Jupyter notebook, ð¥ YouTubeãããª. é± å½¢å¼ ã¿ã¤ãã« è³æ
æ¦è¦ æ©æ¢°å¦ç¿ã®å帰åé¡ã«ããã¦è©ä¾¡é¢æ°ã¨ãã¦ããåºã¦ãã MSE(mean squared error,å¹³åäºä¹èª¤å·®) ã¨ã¯ä¸ä½ä½ãªã®ãã å±±ç»ãã®ããã«ããµãã¨ãã䏿©ãã¤ãµã¿ãããªããçè§£ããããã¦ããè¨é²ã¨ãªãã¾ãã ï¼å¿ è¦ãªæ°å¼ã®å°åºéç¨ãçç¥ããè¨é²ãã¾ããï¼ ã¨ããã¨ã§ããã£ããå±±ç»ãéå§ãã¾ã 1åç®ï¼æ¯éå£ã»æ¯å¹³å ç»ãå§ããåã«ãæºåéåãçµ±è¨ç¨èªããããã ãæ¥æ¬äººæäººç·æ§ã®å¹³å身é·èª¿æ»ã ã顿ã«ãèãã¦ã¿ãã 鏿年齢ãå¼ãä¸ããããã®ã§ãæäººï¼18æ³ä»¥ä¸ãã¨ããã¨ãæ¥æ¬äººã®ãã¡ãæäººãã«è©²å½ããã®ã¯ãç´1å人ãããã®ãã¡ç·æ§ãç´åæ°ãªã®ã§ãæ¥æ¬äººæäººç·æ§ã¯5000ä¸äººç¨åº¦ã¨èããã æ¯éå£ï¼ã¼ãã ãã ããpopulationï¼ æ¯éå£ã¨ã¯ã調æ»å¯¾è±¡ã¨ãªãæ°å¤ã屿§çã®æºæ³ã¨ãªãéåå ¨ä½ å¹³å身é·èª¿æ»ã§èããã¨ãæ¯éå£ã¨ã¯å¯¾è±¡è å ¨å¡ã¨ãããã¨ã«ãªãã ã¤ã¾ãæ¯éå£
Skip to the content. æ©æ¢°å¦ç¿ã®ç ç©¶è ãç®æãäººã¸ æ©æ¢°å¦ç¿ã®ç ç©¶ãè¡ãããã«ã¯ãããã°ã©ãã³ã°ãæ°å¦ãªã©ã®åæç¥èããããµã¼ãã¤ã®æ¹æ³ãè³æã»è«æã®ä½ææ¹æ³ã¾ã§ãå¹ åºãç¥èãå¿ è¦ã«ãªãã¾ããæ¬ã¬ãã¸ããªã¯ãå¦çãæ°ç¤¾ä¼äººã対象ã«ãæ©æ¢°å¦ç¿ã®ç ç©¶ãè¡ãã«ããã£ã¦å¿ è¦ã«ãªãç¥èããããããå¦ã¶ããã®æ¸ç±ãWebãµã¤ããã¾ã¨ãããã®ã§ãã ç®æ¬¡ ããã°ã©ãã³ã°ã®æºå Pythonãåå¼·ããã åãããããã³ã¼ããæ¸ããããã«ãªãã æ°å¦ã®æºå æé©åæ°å¦ãå¦ã¼ã åºæ¬çãªã¢ã«ã´ãªãºã ã¨ãã®å®è·µ æ©æ¢°å¦ç¿ã®å ¨ä½åãå¦ã¼ã åºæ¬çãªã¢ã«ã´ãªãºã ãå¦ã¼ã 深層å¦ç¿ã®åºç¤ãå¦ã¼ã scikit-learnãPyTorchã®ãã¥ã¼ããªã¢ã«ããã£ã¦ã¿ãã ãµã¼ãã¤ã®æ¹æ³ å½éä¼è°è«æãèªãã Google Scholarãæ´»ç¨ããã arXivããã§ãã¯ããã ã¹ã©ã¤ãã®ä½ãæ¹ è«æã®
è¦ç´ããã¨, ãã¼ã¿ãµã¤ã¨ã³ã¹ã»æ©æ¢°å¦ç¿å¨ãã§ããèããããã¨&åçãè¨èªåãã¾ãã. ããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãããããããæ©æ¢°å¦ç¿ã¨ã³ã¸ãã¢ã«ãªããããã¨ãããã£ãªã¢å¿æãæã¤æ¹ã¯å¤ãã¨æãã¾ã. ç§ã®å¨ãã§ã, å ¬ç§ã¨ãã«ãããªå¿æè ã®ç¸è«ãèããã, ï¼ä¸»ã«ã¤ã³ã¿ã¼ã³ã®å¦çããã§ããï¼ä¸ç·ã«ä»äºããããããæ©ä¼ãã¡ããã£å¤ãã§ã. ããã¸ãã¹ãµã¤ãå¼·ããã³ãããµã¼ãã¼ãµã¤ãã¨ã³ã¸ãã¢ãã¨ããè¦ç¹ãããã¼ã¿ã¨ã³ã¸ãã¢å ¼ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããªèªåã, ãããªå½¼ã彼女ãã«ãªã¹ã¹ã¡ãã¦ãã, ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããç®æãããã®ã¹ãã«ããã åé åã®ã¹ãã«ã¢ãããå®ç¾ããããã«ãªã¹ã¹ã¡ãããæ¸ç± ãç´¹ä»ãããã¨æãã¾ã. ãªã, æ¨å¹´ãåæ§ã®ã¨ã³ããªã¼ãæ¸ãã¦ãããã®Upgradeçã¨ãªãã¾ã. shinyorke.hatenablog.com ãã®ã¨ã³ããªã¼ã®å¯¾è±¡èªè ãã¼ã¿ãµã¤ã¨ã³ã¹ã«
ã¯ããã« èªèº«ã®è»¢è·æ´»åã«ãããçããã®è»¢è·ã¨ã³ããªãé常ã«åèã«ãªã£ãã®ã§ãç§ãåãå¢éã®æ¹ã®åèã«ãªãã°ã¨æããæ¸ãæ®ããã¨ã«ãã¾ãããï¼ãã ãæ¬å½ã«ç§ã¨ä¼¼ãå¢éã®æ¹ã«ã¯ãªããªããªã¼ããã¥ããæ°ããã¦ãã¾ããã»ã»ã»ï¼ TLDR; 30æ³ã§ITæªçµé¨ããMLã¨ã³ã¸ãã¢ã«è»¢è· ç´2å¹´åç¬å¦ã§åå¼·ï¼ã»ã¨ãã©kaggleãã¦ãã ãï¼ ç¡é¢ä¿ã«æããç¾è·ã§ã®çµé¨ããªãã ããã 転è·ã§å½¹ã«ç«ã£ã ç®æ¬¡ èªå·±ç´¹ä» ç¾è·ã«ã¤ã㦠転è·ã®çç± åå¼·ãããã¨ è»¢è·æ´»å çµããã« 1.èªå·±ç´¹ä» ãã¾ãã¨ããååã§Twitterãªãkaggleãªãããã£ã¦ãã¾ããkaggleã§ã¯ç»åãNLPã¨ãã£ãdeep learningç³»ã®ã³ã³ããä¸å¿ã«åãçµãã§ããã2019å¹´ã®9æã«éã¡ãã«ãç²å¾ãMasterã«ãªããã¨ãã§ãã¾ããã æãããããä»ã®è»¢è·ã¨ã³ããªãæ¸ããã¦ããæ¹ã ã¨å¤§ããç°ãªãç¹ãã¨æãã®ã§ãããç¾è·
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ã¯ããã« 4æ23æ¥ã«ã¡ã«ã«ãª æ¾äºæ°(@cvusk )ã«ãããæ©æ¢°å¦ç¿ã·ã¹ãã ã®ãã¶ã¤ã³ãã¿ã¼ã³ã«ã¤ãã¦ã®ããã°ãã¹ããããã³å®ããã¥ã¡ã³ããGitHub Pageså ¬éããã¾ããã https://tech.mercari.com/entry/ml-system-design ããå¼ç¨ ã¾ããæ°ã®ããã¼ã¿åæåºç¤Developers Night #4 ãæ´»ç¨ããããã¼ã¿åºç¤ã®ã¤ããæ¹ããã«ããããã¡ã«ã«ãªã®ãã¼ã¿åæãæ¯ããæ©æ¢°å¦ç¿ã·ã¹ãã ã®ãã¶ã¤ã³ãã¿ã¼ã³ãã®çºè¡¨ãã ãã°ãã¼ã®ã¾ã¨ã YouTubeã¢ã¼ã«ã¤ã ã«ãããä½µãã¦è¦è´
2018å¹´ã«ããã¦å®æ½ããã¦ãããæ±äº¬å¤§å¦æ¾å°¾ç 究室ãç£ä¿®ããã¨ã³ã¸ãã¢åãç¡åæè²ããã°ã©ã ãDL4USãã®ãæ¼ç¿ãã¼ãã®ã³ã³ãã³ããç¡åå ¬éãããã é¢é£è¨äºï¼æ¾å°¾ç ç£ä¿®ã®ãã£ã¼ãã©ã¼ãã³ã°ç¡åãªã³ã©ã¤ã³ããã°ã©ã ãDL4USããåéãéå§ ãDL4USãã¨ã¯ï¼Deep Learningã¨ã³ã¸ãã¢è²æè¬åº§ãDL4USãã®æ¼ç¿ã³ã³ãã³ããç¡åå ¬éãã¾ãããå®è£ ã«éããç½®ãã¦ã¨ã³ã¸ãã¢åãã«æ¾å°¾ç ã§ä½æãããã®ã§ãç»åèªèã翻訳ã¢ãã«ããå§ã¾ããçæã¢ãã«ãå¼·åå¦ç¿ã¾ã§æ±ãå®è·µçãªå 容ã«ãªã£ã¦ãã¾ãããèå³ããæ¹ã¯ãã²ãhttps://t.co/jLWlrk9UdK â æ¾å°¾ è± (@ymatsuo) 2019å¹´5æ15æ¥ DL4USã¯é«åº¦ãªãã£ã¼ãã©ã¼ãã³ã°æè¡è ãè²æãããã¨ãç®çã¨ãããã¢ããªã±ã¼ã·ã§ã³æåã®ç¡åãªã³ã©ã¤ã³æè²ããã°ã©ã ã ã æ±äº¬å¤§å¦ãã£ã¼ãã©ã¼ãã³ã°åºç¤è¬åº§ãå¿ç¨è¬
æ°ããªæè²ããã°ã©ã ãDL4USããéå§ãã¦ãã¾ãã 2019å¹´5æã«ãæ¾å°¾ç ç©¶å®¤ã®æ°ããªãã£ã¼ãã©ã¼ãã³ã°ã®ç¡æææãDL4USããå ¬éããã¦ãã¾ãããDeep Learningåºç¤è¬åº§æ¼ç¿ã³ã³ãã³ããã®ãã¼ã¸ã§ã³ã¢ããçã®ä½ç½®ä»ããªã®ã§ãä»ããå¦ç¿ããæ¹ã¯ãã¡ãã«åãçµãã æ¹ãè¯ããã¨æãã¾ãã Dockerã使ã£ãç°å¢æ§ç¯æ¹æ³ãç´¹ä»ãã¦ããè¨äºãæ¸ããã®ã§ãããè¯ããã°ä»¥ä¸è¨äºåç §ä¸ããã Deep Learningåºç¤è¬åº§æ¼ç¿ã³ã³ãã³ããç¡æå ¬é 以ä¸ã®ãããªãµã¤ããç¡æå ¬éããã¦ãã¾ããã å¦ç¿ã«èªç±ã«ä½¿ç¨ãã¦ããã¨ã®ãã¨ã§ãããã ãèå¿ã®ä½¿ç¨æ¹æ³ã詳ããæ¸ãã¦ãªãã®ã§ãåå¿è ã«ã¯ç°å¢æ§ç¯ãå³ãããç°¡åã«ç°å¢æ§ç¯ã§ãã人ã«ã¨ã£ã¦ã¯ãç¥ã£ã¦ããå 容ã®ã¨ãããå¤ãæ°ããã¦ãå 容ãè¯ãã ãã«ãã£ãããªã¨æãã¾ããã ããã§ãã¡ãã£ã¨åå¿è åãã«ç°å¢æ§ç¯ã®è£è¶³ããã¦ã¿ããã¨æãã¾ãã ã
19æ¥ã«è¡ããã Kyoto.ãªãã #3 ã§çºè¡¨ã»ãã¢ãããã¦ããã ããå 容ã¾ã¨ãã§ãã ã¯ããã«: æ¤åºå¨ã®éè¦æ§ ã¢ã¤ãã«é¡èå¥ ããã£ã¨ãã£ã¦ããä¸ã§ãé¡ã®èå¥ã»åé¡(Classification)ã¯CNNã使ã£ã¦åºæ¥ã¦ããããã© ã¾ã 䏿ãåºæ¥ã¦ããªãå¥ã®ã¿ã¹ã¯ããã£ã¦ã ãããç»åå ããã®é¡é åã®æ¤åº (Detection, Localization)ã ãç»åå ã«åã£ã¦ãã人ç©ã誰ã§ãããããèå¥ããããã«ã¯ãã¾ãã¯ãã®ç»åã«åã£ã¦ãããé¡ããæ¤åºããå¿ è¦ãããã ãã®æ¤åºãããé¡ããããã«ã¤ãã¦åé¡å¨ã«ããã¦ããã®é¡ã¯ââãããããã®é¡ã¯ÃÃãããã¨åé¡ãã¦ãããã¨ã«ãªãããã§ã åé¡å¨ã«ä¸ããå ¥åç»åãåãæãã¦æ½åºããã®ã«ãã¾ãé¡é åãæ¤åºããå¿ è¦ããããããã®åé¡å¨ãå¦ç¿ãããããã®ãã¼ã¿ã»ããããæ§ã ãªç»åããé¡é åãæ¤åºãã¦åãæãã¦ããããã«å¯¾ãã¦ã©ãã«ä»ããã
å ¨è³ã¢ã¼ããã¯ãã£è¥æã®ä¼ç¬¬28ååå¼·ä¼ Keywords: DQN, å¼·åå¦ç¿, Episodic Control, Curiosity-driven Exploration
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? åæ© ããããããªã§ãããæ©æ¢°å¦ç¿ã®åå¼·ã«ã¯ã¨ã¦ãæéãæããã¾ãã ã§ããåãåå¼·æéãè²»ãããã¨ãã¦ããææã®è¯ãæªãã§æãæ¹ã大ããå¤ãã£ã¦ãããã¨ã¯ã誰ãã宿ãã¦ãããã¨ã ã¨æãã¾ãã ããã§ãæ¬è¨äºã§ã¯ãã¼ããã¨ã«ç§ãèããæå¼·ã®æç§æ¸ããªã¹ããã¦ãããã¨æãã¾ãã ãã£ã¼ãã©ã¼ãã³ã°ï¼ã¢ã«ã´ãªãºã ã®çè§£ï¼ ãDeep LearningãAn MIT Press book, 2016/12 çºè¡ http://www.deeplearningbook.org/ å°å·æ¬ã売ããã¦ã¾ãããä¸ã®Webãã¼ã¸ã§ãã¤ã§ãã¿ãã§èªãã¾ã
å æ¥ããªã³ã©ã¤ã³å¦ç¿ãµã¤ãCourseraã®"Machine Learning"ã³ã¼ã¹ãä¿®äºãã¾ããããããæé«ã«åå¼·ã«ãªã£ãããã§ãããæ©æ¢°å¦ç¿ã«èå³ããã£ã¦æ å ±åéãå§ãã¦ã人ã«ã¨ã£ã¦ããCourseraã®æ©æ¢°å¦ç¿ã³ã¼ã¹ãããããã§ãããã¨ãã話㯠ãã¯ããç¥ã£ã¦ã¾ãã ã¨ããæãã§ã¯ãªãã§ããããã ï¼ãã¨ãã°ãQiitaã§æ¤ç´¢ãã¦ã¿ãã¨ã以ä¸ã®ãããªåã³ã¼ã¹ã«é¢é£ããè¶ äººæ°è¨äºãåºã¦ãã¾ãï¼ æ°å¦ãé¿ãã¦ãã社ä¼äººããã°ã©ããæ©æ¢°å¦ç¿ã®åå¼·ãå§ããéã®æççµè·¯ - Qiita æ©æ¢°å¦ç¿ãã¼ããã1ãµæéåå¼·ãç¶ããçµæ - Qiita åããããªæãã§ã幾度ã¨ãªã人ãè¨äºã«åã³ã¼ã¹ãè¦ããããããã¤ã¤ããã¶ã2å¹´ãããã¹ã«ã¼ãç¶ãã¦ããã¨æãã¾ãã ãããç´2ã¶æåãã²ãããªãã£ããããæ¬è¬åº§ãå§ãã¦ã¿ã¦ããã¯ãè©å¤éãæé«ã ã£ãã¨æãã¨åæã«ãåã¨åããããªæãã§ãã®ã³ã¼ã¹ãè¯ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}