Algorithms for Non-negative Matrix Factorization Daniel D. Lee£ £ Bell Laboratories Lucent Technologies Murray Hill, NJ 07974 H. Sebastian Seung£à à Dept. of Brain and Cog. Sci. Massachusetts Institute of Technology Cambridge, MA 02138 Abstract Non-negative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algori
non-Negative Matrix Factorization ä»å¹´ã® SIGGRAPH 2004 ã®è«æãEfficient BRDF Importance Sampling Using A Factored Representation ã§ã¯ããã¼ã¿ãå§ç¸®ãã¤ã³ãã¼ã¿ã³ã¹ãµã³ãã«ããããããã«ãäºæ¬¡å ã®è¡åã 2 ã¤ã®ããè¦ç´ æ°ã®å°ãªãäºæ¬¡å ã®è¡åã®ç©ã«å解( Y = GF ã®ããã«ã ãã¨ãã° 4x4 è¡åãã 4x1 㨠1x4 ã® 2 ã¤ã®è¡åã«å解 ) ãã¦ããã®ã§ããããã®ã¨ãéè² å¤è¡åå解(non-negative matrix factorization, NMF)ã¨å¼ã°ããææ³ãç¨ãã¦ãã¾ãã NMF ã¯ãååã®éãè² å¤ã®è¦ç´ ã®ãªãè¡åããå解å¾ã®è¡åãã¾ãè² å¤ã®è¦ç´ ãæããªãããããææ³ã§ããç¹ç°å¤å解(singular value decomposition,
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}