ç¶ã (åçæ¨ç·¨) ã¯ãã¡ã http://www.slideshare.net/iwiwi/2-12188845Read less
ç¶ã (åçæ¨ç·¨) ã¯ãã¡ã http://www.slideshare.net/iwiwi/2-12188845Read less
2. èªå·±ç´¹ä» TopCoder: âwata TCO2010Marathonåªåãªã© Twitter: @wata_orz æ±äº¬å¤§å¦æ å ±çå·¥å¦ç³»ç 究ç§ã³ã³ãã¥ã¼ã¿ç§å¦å°æ» çè«è¨ç®æ©ç§å¦ (ã¢ã«ã´ãªãºã ã®çè«çãªè§£æã¨ã) ããã°ã©ãã³ã°ã³ã³ãã¹ããã£ã¬ã³ã¸ãã㯠第äºç好è©çºå£²ä¸ï¼ PFIã§ã¯2011å¹´å¤ã¤ã³ã¿ã¼ã³ï¼ãã®å¾ã¢ã«ãã¤ã 2 3. æ¬æ¥ã®å 容 ï NPå°é£åé¡ã解ãããã®ã¢ã«ã´ãªãºã ãæ±ãã¾ã ððð ð¼ ⤠ð´ ð¼ ⤠ðððð(ð¼) è¿ä¼¼ã¢ã«ã´ãªãºã ãã¥ã¼ãªã¹ãã£ã㯠ð ð ð ð FPT ã¢ã«ã´ãªãºã maxâ¡ ðð¥|ð´ð¥ ⤠ð, ð¥: æ´æ°} { ðâ ð ð æ´æ°è¨ç» å³å¯ææ°æéã¢ã«ã´ãªãºã 3 4. ææ°æéã¢ã«ã´ãªãºã ï ææ°æéã¢ã«ã´ãªãºã ã¨ã¯ ïµ NPå°é£åé¡ãææ°æéããã¦å³å¯ã«è§£ã ïµ è¨ç®éã
ææ°æéã¢ã«ã´ãªãºã ã¨ããã®ã¯ï¼NPå°é£åé¡ãé å¼µã£ã¦ææ°æéããã¦è§£ãã¢ã«ã´ãªãºã ã®ãã¨ã§ï¼ã§ããã ãææ°ã®åºã®å°ããã¢ã«ã´ãªãºã ãéçºãããã¨ãç®æããã¦ãã¾ãï¼ ã³ã³ãã¹ãçã§ã¯é¨åååé¡ã®ååå ¨åæã«ãã2^(n/2)æéã¢ã«ã´ãªãºã ãªã©ãç¹ã«æåã ã¨æãã¾ãï¼ ãã®åéã¯è¿å¹´çãã«ç 究ããå§ãï¼èªåã大å¦ã§ãã®åéãä¸å¿ã«ç 究ããã¦ãã¾ãï¼ ä»åï¼æ å ±ãªãªã³ããã¯æ¥å宿è¬ç¾©ã¨PFIã»ããã¼ã§çºè¡¨ããæ©ä¼ããã£ãã®ã§ï¼ãã®åéã®åºç¤çãªææ³ããæå 端ã®ææ³ã¾ã§ãã¾ã¨ãã¦ã¿ã¾ããï¼ ææ°æéã¢ã«ã´ãªãºã å ¥é@æ å ±ãªãªã³ããã¯æ¥å宿è¬ç¾© http://www.slideshare.net/wata_orz/ss-12131479 ææ°æéã¢ã«ã´ãªãºã ã®æå 端(ãã£ã³ã»ãªã³ã°)@PFIã»ããã¼ http://www.slideshare.net/wata_orz/ss-12208032
åçé åã¸ã®è¿½å ã³ã¹ã㯠O(1) ã£ã¦ã®ã¯è¦ãã¦ããã°ããã ãã®è©±ã§ããï¼ã©ããã¦ãã¨è¨ãããã¨æå¤ã¨é£ãããã®ã§ãï¼ ã¨ããã®ã, ãã®O(1)ã£ã¦ã®ã¯åçé åã®å®è£ æ¹æ³ã«å¼·ãä¾åãã¦ããããã§ãï¼å®è£ ãç¥ã£ã¦ããªãã¨çãããã¾ããï¼ ä¸è¬è«ã¨ãã¦ï¼1ã¤è¦ç´ ã追å ããã¨ãï¼é åã«ç©ºãããªãã£ããæ°ããé åãä½ãç´ãã¦å ¨è¦ç´ ãã³ãã¼ããå¿ è¦ãããã¾ãï¼ã³ãã¼ã®ã³ã¹ã㯠O(n) ã ããï¼è¿½å ã³ã¹ãã O(n) ã«ãªãã¨ããè°è«ãæ··ä¹±ã®å ã«ãªã£ã¦ãã¾ãï¼ ããããã¨ãã¯ï¼è¦ç´ 追å ã n åç¹°ãè¿ããã¨ãã®è¨ç®éã n ã§å²ã£ãå¹³åãã¨ãã¨ãã解ææ¹æ³ã使ãããããã§ãï¼ä¸è¬ã«, ãã operation C ã®è¨ç®éã C ã n åè¡ã£ãã¨ãã®è¨ç®é O(n) ã n ã§å²ã£ãå¤ O(n)/n ã§è©ä¾¡ããææ³ããªãã解æ (amortized analysis)ã¨è¨ãããã§ãï¼ ãã¦ï¼s
ã¹ã©ã¤ãåºéã«å¯¾ããã¯ã¨ãªå¦çã®ç¨®é¡ã¨ããã«å¯¾ããã¢ã«ã´ãªãºã ãããã¤ãç´¹ä»ãã¾ããã¾ãããã¹ã©ã¤ãåºéãã®å®ç¾©ã§ãããçªé¢æ°ã®ãããªãã®ãæ³åãã¦ãã ãããä¾ãã°ã[2,5,10,-1,0,4,...]ã¨ãããã¼ã¿ã«å¯¾ãã¦ãµã¤ãº3ã®çªé¢æ°ãã¹ã©ã¤ããããã¨ã[2,5,10], [5,10,-1],[10,-1,0],.....ã¨è¤æ°ã®é£ç¶ããåºéãã§ãã¾ãããããã®åºéã«å¯¾ãã¦ä»¥ä¸ã®ãããªã¯ã¨ãªãèãã¾ãã ãã¼ã¿ãµã¤ãºãå°ããå ´åã¯æç´ãªæ¹æ³ã§è¨ç®ãã¦ãåé¡ããã¾ãããããã¼ã¿ãµã¤ãºã大ããå ´åããªã³ã©ã¤ã³å¦çã§æ¬¡ã ã«ãã¼ã¿ãæ¥ãå ´åã¯é«éãªå¦çãæ±ãããã¾ãã天æ°äºå ±ã·ã¹ãã ãéèã·ã¹ãã ãªã©ã§ã¯ãã®ãããªéè¦ãããã¨æãã¾ããä¾ãã°ãããæéå¹ å ã§ã®æé«æ°æ¸©ã»æä½æ°æ¸©ã»å¹³åæ°æ¸©ãè¨ç®ãããããªã¢ã«ã¿ã¤ã ã«æ ªä¾¡ã®é«å¤ã»ä½å¤ãè¨ç®ãããªã©ã§ãã
å æ¥ã®è¨äºãå²ã¨è©å¤ãè¯ãã£ããããªã®ã§ãç¶ããæ¸ãã¦ã¿ããã¨æãã¾ãã ååã¯ãå±é¢ã®æ°ã«çç®ãã¦éº»éã®é£ããã«ã¤ãã¦æ¸ãã¾ããããä»åã¯èªã¿ã¨è¦åãï¼æ¢ç´¢ã¨æåãï¼ã«ã¤ãã¦ç´¹ä»ãããã¨æãã¾ãã å°æ£ã®å ´åï¼MIN-MAXæ³ å°æ£ããªã»ãã®ãããªã²ã¼ã ã¯ãæ å ±ç§å¦çã«ã¯ï¼äººé¶åå®å ¨æ å ±ç¢ºå®äº¤äºã²ã¼ã ã«åé¡ããã¾ããããã®ã¿ã¤ãã®ã²ã¼ã ã§ã¯min-maxæ¢ç´¢ã¨ããå èªã¿ã¨Î±Î²æ³ã¨ããè¦åãï¼æåãï¼ãæå¹ã§ãããã¨ãåãã£ã¦ãã¾ãã 次ã®å³ã®ãããªæãã§ãã ä»ãAã¨ããå±é¢ã§å æã®é çªã§ãããã®ã¨ãå æã«ã¯ï¼¢ï¼ï¼£ã¨ããï¼ã¤ã®æãèãããã¾ãã å æãï¼¢ãæãã¨å¾æã¯ï¼¤ã¨ï¼¥ã®ï¼ã¤ã®æãèããããå æãï¼£ãæãã¨å¾æã«ã¯ï¼¦ã¨ï¼§ã¨ããæãèãããã¾ãã Dï½ï¼§ã«æ¸ãã¦ããæ°åã¯ãã®å±é¢ã§å æçªããã¿ãå±é¢ã®æå©ãï¼å½¢å¢å¤æï¼ãæ°ååãããã®ã§ããå æã¯åºæ¥ãã ãæ°åã大ããå±é¢ã«èªå°ãããã§
æè¿è©±é¡ã®ãæ¥æ¬èªå ¥åãæ¯ããæè¡ããéä¸ã¾ã§èªãã ã 3ç« ããã®ãããæ°åããå ¥ã£ã¦ããã trieï¼ãã©ã¤ï¼ã¨ãããã¼ã¿æ§é ã®2ã¤ã®å®è£ ããããã«é åãã¨ãLOUDSãã«ã¤ãã¦è©³ãã説æãããã¦ããã ããã«é åã«ã¤ãã¦ã¯ãã¼ãã¯ä»¥åè«æãèªãã§åå¼·ãããã¨ããã®ã ãããã®æã¯é£ããã¦ãããããè¦ããããããããããã®æ¬ã®èª¬æãèªããã¨ã§ç解ãã§ããã ãããããã æéãåããã®ã§ããã®æ¬ãææã«åéã¨2人åå¼·ä¼ãããã ãã®2人åå¼·ä¼ã¨ããã®ã¯ãã¼ãã復ç¿ãå ¼ãã¦åéã«æããã¨ããã®ãã ãããã®ã¹ã¿ã¤ã«ã ãããããããã£ã¦ã¿ãã¨ããããã¨é£ããã 次ã®ãããªã¨ããã§ã²ã£ãããããã ã ä¾ã®ãµã¤ãºãå°ãããã¤ã¡ã¼ã¸ãåèµ·ããã®ãé£ããã æåã®å³ã®ãã¼ãçªå·ã¨ãæçµçãªããã«é åä¸ã®ä½ç½®ãç°ãªããããæ··ä¹±ããã åèªçµç«¯ã«ã¤ãã¦è¨åããªãã®ã§ãã©ã®ãã¼ããåèªã表ãã¦ããããããã
æ°ã¯ã¦ãæ£å¼ãªãªã¼ã¹è¨å¿µã¨ãããã¨ã§ããããªãªã¼ã¹ããä½é±éãçµã£ã¡ãã£ããã©ã æ°ã¯ã¦ãªããã¯ãã¼ã¯ã§ã¯ããã¯ãã¼ã¯ã¨ã³ããªãã«ãã´ãªã¸ã¨èªåã§åé¡ãã¦ãããããã®ã«ãã´ãªåé¡ã«ä½¿ããã¦ããã¢ã«ã´ãªãºã ã¯Complement Naive Bayesããããä»æ¥ã¯ãã®ã¢ã«ã´ãªãºã ã«ã¤ãã¦ç´¹ä»ãã¦ã¿ãã Complement Naive Bayesã¯2003å¹´ã®ICMLã§J. Rennieããææ¡ããææ³ã§ãããICMLã¨ããã®ã¯ãæ©æ¢°å¦ç¿ã«é¢ããï¼ãã¶ãï¼æé£é¢ã®å¦ä¼ã§ãæ¡æçã¯ããæ°å¹´ã¯30%ãåã£ã¦ããã2003ã¯119/371ã§ã32.1%ã®æ¡æçã ã£ãããã ã Complement Naive Bayesã®ä½ç½®ã¥ã㯠å®è£ ãç°¡å å¦ç¿æéãçã æ§è½ããããããã ã¨ããæãã§ã2003年段éã«ãã£ã¦ãã絶対çãªæ§è½ã§ã¯SVMã«è² ãã¦ãããããããå¦ç¿ãæ©ãã¨ããã®ã¯å®ã¢ããªã±ã¼ã·
ã¢ã¯ã»ã¹ãã°ã®ã¦ã¼ã¶ã¨ã¼ã¸ã§ã³ã(UA)ãããã©ã¦ã¶ãå¤å¥ããã®ã£ã¦ï¼ã¿ããªä½ä½¿ã£ã¦ã¾ããï¼ èªåãä½ã£ãã¢ã¯ã»ã¹è§£æã·ã¹ãã ã§ã¯ HTTP::BrowserDetect 㨠HTTP::MobileAgent ã«ããããç¬èªãããããã¦ããã®ã使ã£ã¦ãã¾ãããããã¯ã«ã¼ã«ãã¼ã¹ã®å¤å®å¨ãªã®ã§ï¼æ°ãããã©ã¦ã¶ãæ°ç¨®ã® bot ãç»å ´ãããã³ã«æä½æ¥ã§ã«ã¼ã«ã追å ãï¼ããããä½ã£ã¦é å¸ããã¨ããä½æ¥ãå¿ è¦ã«ãªãã¾ãã ãã®æ´æ°ä½æ¥ã大å¤é¢åãããã¦å¯¾å¿ãé ããã¡ã«ãªãã®ã§ï¼ããã®UAæååã¯ãã®ãã©ã¦ã¶ã§ãããã¨ããä¾ã大éã«ä¸ããããèªåã§åæã«å¤å®ã«ã¼ã«ãå¦ç¿ãã¦ãããããã«ãªã£ãã便å©ãªã®ã«ãªããã¨æãï¼decision tree (決å®æ¨)ã使ã£ã¦ã¿ããã¨ãæãç«ã¡ã¾ããã ç®æ¨ã¯ï¼ "Mozilla/5.0 (Windows; U; Windows NT 6.1; ja; rv:1
2. æ¨æ¶ ⢠èªå·±ç´¹ä» â ç§èæå / @iwiwi â æ±äº¬å¤§å¦ ã³ã³ãã¥ã¼ã¿ç§å¦å°æ» M1 â ã¢ã«ã´ãªãºã ç³»ã®ç 究室 â ããã°ã©ãã³ã°ã³ã³ãã¹ãã好ã â 2009 å¹´ã«ã¤ã³ã¿ã¼ã³ããã¦ããã£ã¦ä»¥æ¥ã¢ã«ãã¤ã ã¢ãªæ¬ ï¼ã°ã©ãã®è©±ããããï¼ 1 3. ããããªã°ã©ã éè·¯ã»äº¤éãããã¯ã¼ã¯ ⢠é ç¹ï¼äº¤å·®ç¹ï¼é§ ãªã© ⢠辺ï¼éï¼è·¯ç·ãªã© ãããããã¨ã®ä¾ ⢠æ¡å ï¼äº¤éç®¡å¶ â¢ è¼¸éãç½å®³ã®ããã®è§£æ ⢠å°çæ å ±ã¨çµ¡ãããµã¼ã㹠⢠⦠2 4. ããããªã°ã©ã ã½ã¼ã·ã£ã«ãããã¯ã¼ã¯ ⢠é ç¹ï¼äºº ⢠辺ï¼äººéé¢ä¿ ãããããã¨ã®ä¾ ⢠ãç¥ãåãããï¼ãã¨ã ⢠éè¦åº¦ã»å½±é¿åº¦ã®è§£æ ⢠ã³ãã¥ããã£è§£æ ⢠æ å ±ã®ä¼æåã®è§£æ ⢠⦠(MentionMap ã§ä½æ) æ ç» 3
ãªã¹ãã®å¾ªç°ãã§ãã¯ã¢ã«ã´ãªãºã ã¨ããã°ãå ã¨äºã®ã¢ã«ã´ãªãºã ãæåã ãã©ããµã¨çåããããã®ã§ããã£ã¨æ¤è¨¼ãã¦ã¿ã話ã æéãå´åããããã¨ã³ããªã§ã¯ãªããã©ãã¾ããããã¨ã å ã¨äºã®ã¢ã«ã´ãªãºã ã¨ããã®ã¯ããªã¹ãæ§é ãï¼ã¤ã¥ã¤è¾¿ããã¤ã³ã¿(å )ã¨ãï¼ã¤ã¥ã¤è¾¿ããã¤ã³ã¿(äº)ãç¨æãã¦ãå ãäºã«è¿½ãã¤ãã°ããã®ãªã¹ãã¯å¾ªç°ãã¦ããã¨å¤æã§ããã¨ããã¢ã«ã´ãªãºã ã ãã®è©±ããæåã«èããæ¬ä¼¼ã³ã¼ããä¸ãå ãï¼ã¤é²ãéã«ã¡ããã¨äºã«è¿½ãã¤ãã¦ããã©ããããã§ãã¯ãã¦ããã bool check(List *listp){ List *turtlep = listp; List *rabitp = listp; while(1){ turtlep = listp->next(); rabitp = listp->next(); if(rabitp == turtlep) return tru
åå¼·ãã¤ã¤æ¸ãã¦ã¿ããå¾®å¦ãªç¥èã§æ¸ãã¦ãã®ã§ãããããééã£ããã¨ãããããæ¸ãã¦ãã ã¾ãããã¦åå¦è ããããåå¦è ã«éããããã«å¹³æãªè¨èã§ï¼ ããããã㨠é¢æ°(ã¢ãã«)ã«ä¹±æ°ãä¸ãã¦çæããè¨ç·´ãã¼ã¿ãããå ã®é¢æ°ã®æ¯ãèãã模å£(è¿ä¼¼)ã§ããããã«ããã pybrain Pythonã§æ±ãããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ã©ã¤ãã©ãªãã ããã§ã ã®ãããããã¤ã³ã¹ã³ $ git clone git://github.com/pybrain/pybrain.git $ cd pybrain $(sudo) python setup.py installåè: æ å奮éè¨: PyBrain - a modular Machine Learning Library for Python æ¦è¦ ããã¯ãããã²ã¼ã·ã§ã³(誤差ä¼æ¬æ³) å ¥å層 - é ã層 - åºå層ã®ä¸å±¤ãããªããå ¥å層ã®ãã¼ãã¯
æè¿æ´æ°ãæ»ã£ã¦ããâ¦â¦ ãªãã¨ãããã°ï¼ï¼ï¾Ïï¾ï¼ ãªã®ã§å°ãç´°ããªè©±é¡ãã°ã æé·å ±éé¨åååé¡ï¼LCSï¼ã¨ãããã®ã¯ãã¾ãåçè¨ç»æ³(DP)ãå¦ã¶ã¨ãããã¾ã確å®ã«ç·´ç¿åé¡ã§åºãããåé¡ã§ããäºã¤ã®æååã®å ±éé¨ååã®ãã¡æé·ã®ãã®ã®é·ããæ±ãããã¨ããå 容ã§ãã ãé¨ååããªã®ã§ãæåã®åãæ¹ã¯æååããã¨ã³ã¨ã³ã«ãªã£ã¦ããã¾ãã¾ããã "abfhfr"ã®é¨ååã¨ãã¦"aff"ã¨ããã¢ãªã§ãã ãã ããé çªãå¤ãã¦ã¯ãã¡ã ãã®åé¡ã解ãã«ã¯ããã¾ãã«ãæåãªæ¬¡ã®ã¢ã«ã´ãªãºã ãããã¾ãã æååstr1(é·ãn)ã¨str2(é·ãm)ã«å¯¾ãã (1)äºæ¬¡å é åDPãç¨æããã (2)DP[0][0ãm]ã¨DP[0ãn][0]ã0ã§åæåã (3)äºéã«ã¼ãã§i,jãåããã¦ãåDP[i][j]ã DP[i][j]= max{ DP[i-1][j], DP[i][j-1], (str1
2ã¤ã®æé AãB 㨠XãY ãéãªã£ã¦ãããã©ãããå¤å®ãããå ´åã ã®ããã«4ã¤ã®ãã¿ã¼ã³ãããããããåç´ã«ã A <= X && Y <= B || X <= A && Y <= B || A <= X && B <= Y || X <= A && B <= Yã®ããã«å¤å®ãã¦ã¯ãããªãã Xã¯éãç·ã®ä¸ããYã¯èµ¤ãç·ã®ä¸ãåãã¨ããAãB 㨠XãY ã¯éãªãåãããã®æ¡ä»¶ã¯ã X <= B && A <= Yããã§4ã¤ã®ãã¿ã¼ã³ãã«ãã¼ã§ãããORã¯ä¸è¦ãå§ç¹ã¨çµç¹ãããããããæ¸ãã¨ä»¥ä¸ã«ãªãã å§ç¹2 <= çµç¹1 && å§ç¹1 <= çµç¹2ã¢ã«ã´ãªãºã ã«ååããããããªæ°ããããã©ãè¦ã¤ããããªãã£ãã (追è¨) ç©å½¢ã®éãªãå¤å®ã®æ¹ãæ å ±ãè¦ã¤ãã£ãã * Life is beautiful: ãã«ã»ã²ã¤ãã®é¢æ¥è©¦é¨ï¼ç§ã®å ´å * é·æ¹å½¢ã®éãªããå¤å®ããåé¡ - ã¶
å ¨å¯¾å ¨æçè·¯åé¡ã«ã¯ Warshall-Floyd æ³ã¨ããæåãªæ¹æ³ãããã®ã ããDijkstra(ãã¤ã¯ã¹ãã©)æ³(ï¼å¯¾å ¨æçè·¯åé¡ï¼ãç¹æ°ã®æ°ã¨åãã ãç¹°ãè¿ãã¦å ¨å¯¾å ¨æçè·¯åé¡ã解ããã¨ãã§ãããã¨ããããWarshall-Floyd æ³ã¯ä»¥ä¸ã®ããã«ã¡ã¢ãªè¦æ±éãå³ããã®ã§ãã°ã©ãã¨ãã¦ã¯å°ããè¦æ¨¡ã«å±ãã DIMACS New York(NY) ãã¼ã¿(264,346 ç¹, 733,846 æ)ãç¨ãã¦è§£ãå ´åã§ããæç§æ¸éãã«ããã°ã©ã ãä½æãã㨠260GB ãã®ã¡ã¢ãªãå¿ è¦ã«ãªãã æè¿ã§ã¯ Warshall-Floyd æ³ã GPU ä¸ã«å®è£ ãã¦å ¨å¯¾å ¨æçè·¯åé¡ãé«éã«è§£ãã¨ããç 究ãè¦ãããããã«ãªã£ããä¸è¨ã®çç±ã¨ç¾ç¶ã® GPU ã®ã¡ã¢ãªéãèæ ®ããã¨ä¸è¦æ¨¡ã®ã°ã©ãã«å¯¾ãã Warshall-Floyd æ³ã GPU ä¸ã§å®è¡ããã®ã¯é£ããã®ã§ãå°è¦æ¨¡ãªåé¡ã§æ¯è¼ã
ã¢ã«ã´ãªãºã ããã¼ã¿æ§é ã®æ§è³ªãããã°ã©ãã¢ã«ã´ãªãºã 㯠GPU ã¨ã®ç¸æ§ã¯è¯ããªãããããã以ä¸ã®è«æã§ã¯è¦æã®ã°ã©ãã¢ã«ã´ãªãºã ã GPU ã§ã©ãã ãé«éåã§ãããã¨ãããã¨ã«ã¤ãã¦ææ¦ãè¡ã£ã¦ãããå¤ãã® GPU ã®ç 究(ç¹ã«å½å )ã¯æããã« GPU ã§æ§è½ãåºããããé¡æããæ±ã£ã¦ããªãã®ã§ã以ä¸ã®è«æã®ãã£ã¬ã³ã¸ç²¾ç¥ã¯è³è³ã«å¤ããã Large Graph Algorithms for Massively Multithreaded Architectures 以ä¸ã¯ CPU ä¸ã§ã®ãã¤ã¯ã¹ãã©æ³ï¼æçè·¯åé¡ï¼ã®å®é¨çµæã«ãªãããããã¨æ¯è¼ããã¨ä¾ãã°å ¨ç±³ãã¼ã¿ã§ï¼å¯¾å ¨ã®æçè·¯åé¡ã解ããã¨ãã« CPU ã§ã¯ 5 ç§ç¨åº¦ã§çµäºããããGPU(Tesla) ä¸ã§ã¯ 672ç§ããã£ã¦ããï¼ä¸è¨ã®è«æã®ï¼ï¼ãã¼ã¸ï¼ããã ããï¼ç§ã¨ããã®ã¯ããªãæééããã¦ããã°ã©ã ãä½æããå ´åã®çµæ
æçè·¯åé¡ã«é¢ãã¦ã¢ã«ã´ãªãºã ã®æç§æ¸ãææ¥ãè¬æ¼çã§ä½¿ç¨ããã¦ããè³æã«ä»¥ä¸ã®ããã«æ¸ãã¦ããã®ãè¦ããããã¨ãå¤ãã ï¼ï¼ãã¤ã¯ã¹ãã©æ³ã«ããã¦ã¯ããã³ã·ã£ã«æå°ã®ç¹ãè¦ã¤ããéã«åªå ãã¥ã¼ï¼ãã¼ããç¹ã«2-ãã¼ã)ãªã©ã使ç¨ããã¨å®è¡æéãéããªããããã£ãããããã¼ãã使ãã¨ããã«éããªãã âç¹æ°ã n, ææ°ã m ã¨ããã2-ãã¼ãã§ã¯è¨ç®éã O(m log n)ã ãã£ãããããã¼ãã使ã㨠O(m + n log n) ã«ãªãã®ã ããå®éã«ã¯ãã£ãããããã¼ãã使ãã¨å®è¡ããã¾ãéããªããªãï¼ãããé ãï¼ãå®ç¨çã«é«éãªã®ã¯ ãã¼ã(heap)ããã±ãã(bucket)ããã«ãã¬ãã«ãã±ãã(MLB)ãããã®ãã¼ã¿æ§é ã§ããã ï¼ï¼å ¨å¯¾å ¨æçè·¯åé¡ã«å¯¾ãã¦ã¯ãï¼å¯¾å ¨æçè·¯åé¡ã«å¯¾ãããã¤ã¯ã¹ãã©æ³ãç¹ã®æ°ã ãç¹°ãè¿ããããã¯ã¼ã·ã£ã«ã»ããã¤ãæ³(Warshall-Flo
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}