åå æ°ã§3次å å転 ä¸ç°ã亨, 2003å¹´11æ25æ¥ â ããããã°åå æ°ã§ï¼æ¬¡å ã®å転ãè¨ç®ã§ãã åå æ°ï¼ããããã, ã¯ã©ã¼ã¿ããªã³, quaternionï¼ã使ã£ãå転ã®åãæ±ãæé ã説æãã¾ãã ï¼ï¼ï¼åå æ°ã®å®é¨ã¨èé¨ã¨æ¸ãæ¹ åå æ°ã¨ã¯ãï¼ã¤ã®å®æ°ãçµã¿åããããã®ã§ããï¼ã¤ã®è¦ç´ ã®ãã¡ãã²ã¨ã¤ã¯å®é¨ãæ®ãï¼ã¤ã¯èé¨ã§ãããã¨ãã°ãQã¨ããåå æ°ããå®é¨ t ã§èé¨ã x, y, z ããæãç«ã£ã¦ããã¨ããä¸ã®ããã«æ¸ãã¾ãã ã¾ããV = (x, y, z)ã¨ãããã¯ãã«ã使ã£ã¦ã Q = (t; V) ã¨ãæ¸ããã¨ãããã¾ãã æ£çµ±çã«èæ°åä½i, j, kãå©ç¨ããæ¸ãæ¹ã ã¨ã Q = t + xi + yj + zk ã¨ãæ¸ãã¾ããããã£ã¡ã¯ãã¾ã使ãã¾ããã ï¼ï¼ï¼åå æ°å士ã®æãç® èæ°åä½å士ã®æãç®ã¯ ii = -1, ij = -ji = k (ãã®ä»ã®çµ
äºã¤ã®å¤ã沢山観測ãã¦ããã¨ãã©ããããã®å¤ã¯ç´ç·ã«ã®ãããããã¨ãåãã£ãã ã§ã観測ããå¤ã«ã¯èª¤å·®ãå«ã¾ãã¦ããã®ã§ãã©ãé å¼µã£ã¦ãå ¨é¨ã®ç¹ãéãç´ç·ãå¼ãã®ã¯ç¡çã£ã½ãã ããã§ãå ¨ã¦ã®è¦³æ¸¬ããç¹ã«å¯¾ãã¦ãªãã¹ãè¿ããéããããªç´ç·ãæ±ããã®ãç®æãã ç´ç·ãæ±ããã£ã¦ãã£ã¦ããç´ã«ç·ãæ¸ãããããªãã¦ãå¾ã§è¨ç®ããããããã«ç´ç·ã®æ¹ç¨å¼ã®ä¿æ°ãæ±ããã®ãããã®ãã¼ãã ã¾ãã®åãæå°èªä¹æ³ã èªãã§åã®ãã¨ã誤差ã®2ä¹ãæå°ã«ããä¿æ°ãæ±ããæ¹æ³ã ãã®1 以ä¸ã®å¼ãèããã ããã¨ç´ç·ä¸ã®ç¹ã¯ä¸å¼ãæºããããããã観測ç¹ã®èª¤å·®ã¯æ¬¡ã¨ãªãã ãã®å¤ã¯æ£è² 両æ¹ã®å¤ãã¨ãã®ã§2ä¹ããå ¨ã¦ã®è¦³æ¸¬ç¹ã«å¯¾ããåãæå°ã«ãªãããã«ä¿æ°ãå®ããã ã§ããããåå¾®åãã¦0ã¨ãããé£ç«ããã¦è§£ãã¨ä»¥ä¸ãå¾ãã ä½ããã¯ããããxã¨yã®å¹³åã¨ããã ãããå¤å½¢ããã¨ã ã¨ãªããããå¹³åãéããå¾ããå ±
ãã®è¨äºã¯Math Advent Calendar 2015 2æ¥ç®ã®è¨äºã§ãã ååã®è¨äºã¯515hikaruããã®Math Advent Calendar 2015 ä¸æ¥ç® - 515 ã²ããã®ããã° æ¥å¸¸ç·¨ã§ãã ã¨ãããã¨ããã30æ³ã«ãã¦æ°å¦ãå¦ã³å§ãã¾ããããã¾ã¯æ¯æ¥æ¥½ããæ°å¦ã®æ¸ç±ãèªãã ãæ¹ç¨å¼ã解ããããã¦ãã¾ãã æ¬è¨äºã§ã¯ãåã¨åãããã«ããä¸åº¦æ°å¦ãå¦ã³ãããªã¨æã£ã¦ãã人åãã«ãæ°å¦ã®é åãåçºè¦ããæ¹æ³ãç´¹ä»ãã¾ãã 30æ³ã«ãã¦æ°å¦ãå¦ã³å§ãããã£ãã ãã£ããã¯ããã°ã©ãã®ããã®æ°å¦åå¼·ä¼ã§ãã ã¨ãããç¸ã§ãã®åå¼·ä¼ã§çºè¡¨ãããã¨ã«ãªããããããæ°å¦ãå¦ã³ç´ãã¾ããã å 容ã«ã¤ãã¦ã¯ã以ä¸ã®è¨äºãåç §ãã ããã ããã°ã©ãã®ããã®æ°å¦åå¼·ä¼@ç¦å²¡ã«ç»å£ãã¦ãã¾ãã ããã°ã©ãã®ããã®æ°å¦åå¼·ä¼@ç¦å²¡#2ã«ç»å£ãã¦ãã¾ãã ãã®æ°å¦åå¼·ä¼ã§æ°å¦ãåå¼·ãããã¨
0ã®0ä¹ã®æ£è§£ããããæ¤ç´¢ãã¦ãè¦ã¤ãããªãã®ã§ä½æããã æ´æ°ï¼2019/11/29ï½å ¬éï¼2015/11/21 æè²ã»å¦ç¿ 0ã®0ä¹ã¯ãããã§ããï¼ æ£ãã解çãçãããã¾ããï¼ äºã®çºç«¯ã¯ãæ¨å¹´2æã®èªå£²æ°èã«ã0ã«0ããããã¨0ã ãã0ã0ä¹ããã¨1ã«ãªããã¨æ¸ãå§ããå¦åä½ä¸ã«ã¤ãã¦æ¹è©ããè¨äºãåºåã£ãã¨ããããå§ã¾ãã¾ããããã«ã¤ãã¦ãããã«ãªãã¨ãè¨ããªããééã£ã¦ãã¾ããããæè¿ã¯ããæãã¦ããã®ï¼ã・・・ãªã©ã¨ãããä¸ã§è«äºãççºãã¾ããã ãã®0ã®0ä¹äºä»¶ããããããã2å¹´ã«ãªããã¨ãã¦ããã®ã§ããããã«èª°ããæ£ãã¦ããã¦ããã¨æããããæ¤ç´¢ãã¦ã¿ãã®ã§ãããããããªè¨ãåã¯å¤ã è¦åãããã¾ããããæ£ãã解çã«è¨åãã¦ãããµã¤ãï¼ãã¼ã¸ï¼ã¯è¦ã¤ãããªãã£ãã®ã§ãåè¶ãªããããã§æ£ãã解çãè¨è¿°ãã¦ããããã¨æãã¾ãããã®æ©ä¼ã«ã0ã®0ä¹ãã«ã¤ãã¦æ£ããç解ããã ããã°
å¹³åã¯åãã§ãããæ¨æºåå·®ã大ããç°ãªããã¼ã¿ã®ãã¹ãã°ã©ã ã®ä¾ã赤ã§ç¤ºããããã¼ã¿ã®æ¹ãéã§ç¤ºããããã¼ã¿ãããæ¨æºåå·®ãå°ããã å¹³å 0, æ¨æºåå·® Ï ã®æ£è¦åå¸ã®ç¢ºçå¯åº¦é¢æ°ããã®åå¸ã«å¾ã確çå¤æ°ã 0 ± Ï ã®éã«å¤ãã¨ã確çã¯ããã 68% ã§ãããã¨ãèªã¿åããã æ¨æºåå·®ï¼ã²ãããã ãã¸ãããï¼è±: standard deviation, SDï¼ã¨ã¯ããã¼ã¿ã確çå¤æ°ã®ãå¹³åå¤ããã®æ£ãã°ãå ·åï¼ã°ãã¤ãï¼ã表ãææ¨ã®ä¸ã¤ã§ãããåå·®ãã¯ãã«ã¨ãå¤ãæ¨æºåå·®ã®ã¿ã§ãããã¯ãã«ã¯ãã¦ã¼ã¯ãªãããã«ã ãçãããªãã æ¨æºåå·®ã2ä¹ããã®ãåæ£ã§ãããå¾ã£ã¦ãæ¨æºåå·®ã¯åæ£ã®éè² ã®å¹³æ¹æ ¹ã§ãã[1]ãæ¨æºåå·®ã 0 ã§ãããã¨ã¯ããã¼ã¿ã®å¤ãå ¨ã¦çãããã¨ã¨åå¤ã§ããã æ¯éå£ã確çå¤æ°ã®æ¨æºåå·®ã Ï ã§ãæ¨æ¬ã®æ¨æºåå·®ã s ã§è¡¨ããã¨ãããã äºä¹å¹³åå¹³æ¹æ ¹ (RMS
æåã«ã¯ã£ããã¨æ¸ãã¦ããã¾ããããã®ä»¶ã«é¢ãã¦ã¯ãç®æ°æè²ã®æå°è 層ããã¼ã¯ãµã¤ãã«å ã¡ã¦ããã¨ä¿¡ããã«è¶³ãååãªè¨¼æ ãããã¾ãããåå¥ã®äºä¾ã«ã¤ãã¦ãæ室ã§ã®æ師ã®è½åãè³è³ªã責ããæå³ã¯æ¯é ããã¾ããã®ã§ããã®ç¹ã¯ãããããããããå½¼ããããä¸æ¬¡çãªè¢«å®³è ã§ããã¨èãã¾ãã
第3åç®ã®éå¬ã¨ãªãè¶ é£åã³ãã·ã¢ã ã®æ±ºåãã ä»å¹´ãå æ¬æ¨ãã³ãã¡ã¼ã¬ã§10æ12æ¥(æã»ç¥)ãéå¬ãããã äºé¸ã»æ¬é¸ã¨æ°å¤ãã®å¼·æµã¨ã®ç¾çãªéããåã¡æãã天æå¼·è±ªæ ¡ãéã£ãã 決åã¯æ¨å¹´åæ§3ã©ã¦ã³ãå¶ã§ãå人ã®åã競ãããã©ã¦ã³ã1ããå§ã¾ãã å®åè æãã®æ±ºåã§ã¯ãåºç¤ããè¶ é£åã§ããã©ã®ãã¼ã ã軽快ãªèª¿åã§ç¹ãéãã¦ãã£ãã å²éã¨éæã2åç®è±èªã4åç®åå¦ã«ã¦ã¡ã³ãã¼å ¨å¡ãå¾ç¹ãã ã¡ã³ãã¼å¹³åç¹ãé«ãã¾ã¾ãä¸ä½ãäºããã¨ã«ãªã£ãã ããããä¸ç¤5åç®æ¥æ¬å²ã§ã¯å ¨ãã¼ã ãä¸æ£è§£ã¨ããè¶ é£åã®å£ã«å½ããã å®é½å®®ã»å¾³å³¶ã6åç®çç©ã7åç®ä¸çå²ã§ç¹ãéãããããã¨ã®å·®ãåããã ã©ã¦ã³ã1ã¯å²éãããããèµ°ãç¶ããéæã追ããããå½¢ã§æãè¿ãçµæã¨ãªã£ãã ã©ã¦ã³ã2ã§ã¯ãåºé¡åãç·ååé¡ã¨ãã形㧠ããã¾ã§ã®è¶ é£åã³ãã·ã¢ã ã®ä¸ã§ãç¹ã«ç¹æ®ãªåé¡ãåºé¡ããã ããããèµ°ã£
ããã¼ã¿åå¸ã®è¬ã«è¿«ãã第6å ããã°ã©ãã®ããã®æ°å¦åå¼·ä¼ çºè¡¨è³æ (2016/3/19[sat]) 確çã»çµ±è¨ãå¦ãã ãã¨ãããæ¹åãã«ããã¼ã¿åå¸ã¨ã¯ä½ãã解説ãã¦ã¿ãè¨äºã§ããç¹ã«ãã¤ãºçµ±è¨å¦ãå¦ãã§ããã¨ãã¼ã¿åå¸ãåºç¾ãã¾ããããã¾ãã¡ã©ããªäºè±¡ã対å¿ãã¦ããåå¸ããããã«ããã®ã§ããã®è¾ºãã«è¿«ãã¾ãã
ç®æ°ãæ°å¦ã®é£ããåé¡ã§è§£ãæ¹ãããã£ãæã®ããã®ãããããããã¤ã¾ã§ãå¿ããªãããã«ã æ¥æ¬æ°å¦æ¤å®åä¼ã¯ãæ±æ¸æ代ã«äººæ°ã ã£ããç®é¡ããç¾ä»£ã«ç¦ããã¾ãããç®æ°ã»æ°å¦ãéãã¦èããåã³ãåé¡ã解ã楽ãããåèªèãã¦ãããããã«ãæ¯å¹´1æ23æ¥ããç®é¡æåãåºããæ¥ãã¨å®ããå¥è¯ã®æ±å¤§å¯ºã«åé¡ãå¥ç´ãã¦ããã¾ãã æ¥æ¬ç¬èªã®ãå¦ã³ã®æåã§ãã ç®é¡ã¨ã¯ãç¥ç¤¾ã寺é¢ã«å¥ç´ãããåç®ã®çµµé¦¬ã®ãã¨ã§ãæ¥æ¬ç¬èªã«åºã¾ã£ãæåã ã¨è¨ããã¦ãã¾ããé£åãå¤ãã§ãããåé¡ã解ããåã³ãç¥ä»ã«æè¬ããããå¦æ¥æå°±ãç¥é¡ãã風ç¿ã¨ãã¦è¦ªãã¾ãã¦ãã¾ããã æä¾ï¼å¤§åéç¥ç¤¾ 2015å¹´ããæ¯å¹´æ±å¤§å¯ºã§éå¬ãã¦ããã¾ããç®é¡å¥ç´å¼ããã³ç®é¡ã«æ²è¼ããåé¡ã®è§£çåéã«ã¤ãã¦ãæ¨ä»ã®æ°åã³ããã¦ã¤ã«ã¹ææçï¼COVID-19ï¼æææ¡å¤§é²æ¢ã®å½±é¿ã«éã¿ãèª ã«æ®å¿µã§ã¯ããã¾ããã2021å¹´ã¯éå¬ããä¼æ¢ããããã¨ã«ã
The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to
4ã¤ä»¥ä¸ã®å¹³é¢ã«å²ã¾ããç«ä½ããå¤é¢ä½ãã¨å¼ã³ãä¸ã§ããã¹ã¦ã®é¢ãååã®æ£å¤è§å½¢ã§æ§æããããæ£å¤é¢ä½ãã¯æãç¾ãã対称æ§ããã¤ç«ä½ã§ãæ£åé¢ä½ãªã©5種é¡ãããªããã¨ãç¥ããã¦ãã¾ãããã®æ£å¤é¢ä½ã®äºç¨®ã¨ãã¦ãè¦ä»¶ãç·©åãããã¨ã§å¯¾ç§°æ§ãæã¤å¤é¢ä½ãèãåºããã¦ãã¾ããããå®ã«400å¹´ã¶ãã«æ°ãã対称æ§å¤é¢ä½ãã¢ã¡ãªã«ã®æ°å¦è ã«ãã£ã¦èæ¡ããã¾ããã After 400 years, mathematicians find a new class of solid shapes http://theconversation.com/after-400-years-mathematicians-find-a-new-class-of-solid-shapes-23217 ãæ£å¤é¢ä½ã(é称ããã©ãã³ã®ç«ä½)ã¯ããã¹ã¦ã®é¢ãååãªæ£å¤è§å½¢ã§æ§æããããã¹ã¦ã®é ç¹ã§åãæ°ã®é¢ãæ¥ããç«ä½ã§ãæ£å
æ°å¦è ãã¢ã³ã«ã¬ã¯æ¯æ¥è²·ã£ã¦ããå ¬ç§°1kgã®ãã³ããã°ãã°è»½ç®ãªã®ã«æ°ã¥ãããããã§éããä¸å¹´éè¨ãç¶ãããããå¹³å950gã®æ£è¦åå¸ã«ã»ã¼å¾ããã¨ã確èªããè¦å¯ã«å±ãåºã¦ãã³å±ã«è¦åããããã¤ã¾ããã³å±ã¯æåãã1kgã®ãã³ãç®æ¨ã«ãã¦ããªãã£ãï¼ ããããã¾ãä¸å¹´ééããè¨ãç¶ãããã¢ã³ã«ã¬ã¯ãä»åº¦ã¯ãã®åå¸ãæ£è¦åå¸ã¨ã¯ç°ãªããå³ã«è£¾ãé·ããã¨ãè¦åºããåã³è¦å¯ã«å±ãã§ã¦ãã³å±ã®ä¸æ£ãåçºãããã¤ã¾ãããã³å±ã¯åçãããã¨ãªããåã«ç®æ¹ã®éãããªãã³ãé¸ãã§ãã¢ã³ã«ã¬å®¶ã«å£²ã£ã¦ããã ãã§ãããã¨ããã¼ã¿ããè¦æããããã§ããã æ°å¦ã»ããã¼ 2010å¹´9æå·ãéå·» 588å·ãP.35 ã½ã¼ã¹ã¯ä¸æãã ãé¢ç½ãããã âãã¾ãã¾âæ¥å¸¸ã«æ½ããå¶ç¶ããç§å¦ãã: ã¬ãã¼ãã»ã ããã£ãã¦, ç°ä¸ ä¸å½¦: æ¬ ãã®æ¬ã«åãè¨è¿°çºè¦ã (via deltam) (via matakimika)
ããâ¦ã·ã³ã¬ãã¼ã«å°6ã®ç®æ°ã®åé¡ããããã ãã©ãçãã解ãã¾ããï¼ç§ã¯ã ãª(ï½ï½¥Ï・´)ï½·ï¾ï½¯ http://t.co/zhurxcO7Ge â YuriL (@YuriL) 2013å¹´10æ29æ¥ ä¸ã®ç®æ°ã®åé¡ããTwitterä¸ã§è©±é¡ã«ãªã£ã¦ããã éãè²ãå¡ãããé¨åã®é¢ç©ãæ±ããå³å½¢ã®åé¡ã§ãã·ã³ã¬ãã¼ã«ã§ã¯å ¬ç«å°å¦æ ¡ã®6å¹´çã¬ãã«ã ã¨ããã ãããªãã§ãããããã¯ç¹ã«é£ããåé¡ã¨ããããã塾ã®å®£ä¼ç´é¢ã®ããã§ãããã·ã³ã¬ãã¼ã«ã§ã¯åã®é¢ç©ã¯å°6ã§æããããã§ããå ã¿ã«å ¬ç«å°å¦æ ¡ã®åé¡ã§ããã @heiseieumenes: @YuriL å°6ã®åã«æãã¦ã¾ããããããè¤éã§é£ããåé¡ãããããã£ã¦ã¾ããã â YuriL (@YuriL) 2013å¹´10æ29æ¥
社ä¼äººã®ææ¸åè½åã®åä¸ããã¼ãã¨ãã¦ä¼æ¥ç ä¿®ãè¡ã£ã¦ãã¾ããè¤éãªæ å ±ããã«ã®ã¨ãªãæ§é ãè¦æãã¦ãããããã表ç¾ãããããã§ãã·ã§ãã«ã ããã«ã¡ã¯ãææ¸åè½ååä¸ã³ã³ãµã«ã¿ã³ãã®éç±³ç浩ã§ããï¼âé£è¼ï¼èª¬ææ¸ãæ¸ãæ©ã¿è§£æ±ºç¸è«å®¤ãããããã(^_^)/ï¼ æ°ã¶æåã«ä¸é¨ã§è©±é¡ã«ãªã£ã¦ããã®ã横ç®ã§è¦ã¦ãã¦æ°ã«ãªã£ã¦ãããã¨ãªãã§ãããç¾å¨ãå°å¦æ ¡ã®ç®æ°æè²ã§ãæãç®ã®é åºåé¡ãã¨ããè°è«ãããããã§ãã ã4人ã«3åãã¤ãã«ã³ãé ãã¨ãããã«ã³ã¯ä½åå¿ è¦ï¼ã ã¨ããåé¡ã®çããè¨ç®ããã¨ãã 4Ã3 ã¨ããç«å¼ã¯ééãã§ã 3Ã4 ã¨ããå¼ãæ£ãã ã¨ããæå°ãããã®ãããæãç®ã«ã¯é åºããããæ´¾ã®æå°æ³ã ããã§ã ç§ã¯æåãã®è©±ãèããã¨ãããä½ãä½ã ããããããªãã»ã»ã»ãã¨ãæããã¤ã¶ããã¦ãã¾ãã¾ãããã ã£ã¦ã©ã£ã¡ãåããããªãã§ãããä½èãã¦ãã®ããããå çï¼ãã¨ã ï¼åèã¾
âªããããã§ãã¼ããããªã¥ãã¯èè² ã£ã¦ãå±±ã«è¡ããã⪠âªããããã§ãã¼ãããWEBãè¦ãã¦ãæ°æ¥½ï¼ã¹ã¼ã¬ã¯ï¼ãã⪠⪠ã¦ã³ãã«ãã¼ãã¦ã³ãã«ã㼠⪠ã«ãããªã³ã° ⪠ã«ãããªã³ã°âªãã«ããªã³ã° âª
éç·å½¢ @_mod_p DVDã³ãã¼ã¬ã¼ãç ´ãããã°ã©ã DeCSSã®ä½¿ç¨ã¯ãããã½ã¼ã¹ã³ã¼ãã®å ¬è¡¨ãéæ³ã¨ãªã£ããã¨ã«æè°ãã¦ãã½ã¼ã¹ã³ã¼ããå§ç¸®ãåé²æ°è¡¨ç¾ãããã¨ã§ç´ æ°ã«ãã¦å ¬éãããDeCSSã表ç¾ããç´ æ°ããéæ³ç´ æ°ããããhttp://t.co/cZlPLLktiN 2013-07-23 13:27:59
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}