A Powerful, Flexible, and Intuitive Framework for Neural Networks Get Started Learn More
2. â¾èªâ¼°å·±ç´¹ä» lï¬â¯ å¾å± Â èª ä¹ Â (Seiya  Tokui)   @beam2d  (Twitter,  GitHub) lï¬â¯ PFI  (2012-âââ2014)  -âââ>  PFN  (2014-âââ) lï¬â¯ å°â¾¨éï¼æ©æ¢°å¦ç¿ â⯠â¾èªç¶â¾è¨èªå¦ç理ãè¿åæ¢ç´¢ï¥ªã®ããã®ããã·ã³ã°ï¼ä¿®â¼ å£«ï¼ â⯠Deep  Learningï¼2012å¹´ï¦ç§ãããï½ï¼ãç»åã»æ åèªè識 lï¬â¯ 4  â½æã« Â Chainer  ãä½ãå§ãã¦ä»ã¯ãããã¡ã¤ã³ 2 3. ä»â½æ¥ã®ãã¯ãªã lï¬â¯ Deep  Learning  ã®å®è£ ãç´¹ä»ãã¾ã â⯠Deep  Learning  ã§ã©ããªãã¨ãã§ãããã¿ãããªè©±ã¯ãã¾ããï¼ã¦ã§ãä¸ ã®ã¹ã©ã¤ããè¨äºãæ¸ç±ãªã©ãåç §ãã¦ããã ããã°ã¨æãã¾ãï¼ â⯠ã¾ããã¥ã¼ã©ã«ãããã®ï¼å®è£ ã«åããï¼å®å¼åã«ã¤ãã¦ã話ãããã¨ã Chai
21 Apr 2015 解説&ãµã¼ã㤠ãã£ã¼ãã©ã¼ãã³ã°ã»ããã¼ ãã£ã¼ãã©ã¼ãã³ã°ã«ã¤ãã¦ï¼åºç¤ã¨ãªããã¥ã¼ã©ã«ãããã¯ã¼ã¯ããæè¿ã®ææ³ï¼ãã¼ã«ã®ä½¿ãæ¹ã«ã¤ãã¦ã¾ã¨ãã¦ãã¾ãï¼ ãã£ã¼ãã©ã¼ãã³ã°ã«ã¤ã㦠ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ ãªã«ã¬ã³ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ çæã¢ãã«ï¼ãªã¼ãã¨ã³ã³ã¼ãï¼ ãã£ã¼ãã©ã¼ãã³ã°ã®ãã¼ã«
Deep Learning in Speech Synthesis Heiga Zen Google August 31st, 2013 Outline Background Deep Learning Deep Learning in Speech Synthesis Motivation Deep learning-based approaches DNN-based statistical parametric speech synthesis Experiments Conclusion Text-to-speech as sequence-to-sequence mapping ⢠Automatic speech recognition (ASR) Speech (continuous time series) â Text (discrete symbol sequence)
Please see cs224n.stanford.edu for the current (Winter 2017) version of this class. Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, email
Answer (1 of 13): 1. A simple course in neural networks should help (Geoff Hintons course on coursera) 2. Gradient Descent/Stochastic Gradient Descent 3. Logistic Regression 4. Ability to code in a standard programming language (Python, Java, C++ etc) 5. An understanding of probability, linear al...
Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Why Caffe? Expressive architecture encourages application and innovat
2. ç´¹ä» ï½ å²¡  å³â¾¥éï§©æµ Â (æ©â¼¤å¤§ç理⼯工M1) ï½ åºâ¾èº«ãä½ã¾ãç Â Â Â Â Â æ¨ªæµ ï½ è¶£å³âãæ ç»éè³,  ã·ã³ã»  /  kaggleæ´ Â 3ã¶â½æ ï½ å¥½ããªç©âãredbullã¨æè¿ã¯ãã¯ã ï½ @0kayu ç 究   è³ç»åã⽤ç¨ãã診æè£å©æ³ã®éçº 2
æ¦è¦ æè¿è©±é¡ã® Deep Learningï¼NIPS ã ICMLï¼CVPR ã¨ãã£ãä¸çã®è©±ã ããã¨æã£ã¦ããã Kaggle 㧠Deep learning ãå»å¹´ä¸ä»¶ï¼ä»å¹´ã«å ¥ã£ã¦æ´ã«ä¸ä»¶åªåãã¦ããã®ã§ã¾ã¨ããï¼ Kaggle Kaggle: Your Home for Data Science ããªãã¿ã®ãã¼ã¿ãã¤ãã³ã°ã³ã³ããã£ã·ã§ã³ãµã¤ãï¼ãã¼ã¿ã¨ç®çé¢æ°ãä¸ããããä¸ã§æãé«ãã¹ã³ã¢ãåºãããã¼ã ã«è³éãåºãï¼ æè¿ã§ã¯ KDD Cup ã http://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge:title=ICML2013 workshop competition]ï¼ã RecSys2013 Competitionï¼ã¬ã¹ãã©ã³ã¬ãã¥ã¼ãµã¤
岡éåã§ããDeep Learningãååéã®ã³ã³ããã£ã·ã§ã³ã§åªåã話é¡ã«ãªã£ã¦ãã¾ããDeep Learningã¯7ã8段ã¨æ·±ããã¥ã¼ã©ã«ãããã使ãå¦ç¿ææ³ã§ãããã§ã«ãç»åèªèãé³å£°èªèãæãæè¿ã§ã¯ååç©ã®æ´»æ§äºæ¸¬ã§åªåããããæ¢åãã¼ã¿ã»ã»ããã§ã®æé«ç²¾åº¦ãéæãã¦ãã¾ãã以ä¸ã«å¹¾ã¤ãä¾ãããã¾ãã ç»åèªè LSVRC 2012 [html]  åªåãã¼ã ã¹ã©ã¤ã [pdf], ã¾ã¨ãã¹ã©ã¤ã[pdf] Googleã«ãã巨大ãªNeuralNetãå©ç¨ããç»åèªèï¼ç«èªèã¨ãã¦æåï¼[paper][slide][æ¥æ¬èªè§£èª¬] ã¾ããååéã®ãããã«ã³ãã¡ã¬ã³ã¹ã§Deep Learningã®ãã¥ã¼ããªã¢ã«ãè¡ããããµã¼ãã¤è«æãããã¤ãåºã¾ãããããããæ¥å¹´ä»¥éãããã話ãå¢ãã¦ãããã¨ãèãããã¾ãã ICML 2012 [pdf] ACL 2012 [pdf] CVPR
Deep Learning Methods for Vision CVPR 2012 Tutorial 9:00am-5:30pm, Sunday June 17th, Ballroom D (Full day) Rob Fergus (NYU), Honglak Lee (Michigan), Marc'Aurelio Ranzato (Google) Ruslan Salakhutdinov (Toronto), Graham Taylor (Guelph), Kai Yu (Baidu) Overview Hand-designed features such as SIFT and HOG underpin many successful object recognition approaches. However, these only capture low-level edg
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}