Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode
Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode
2. ç´¹ä» ï½ å²¡  å³â¾¥éï§©æµ Â (æ©â¼¤å¤§ç理⼯工M1) ï½ åºâ¾èº«ãä½ã¾ãç Â Â Â Â Â æ¨ªæµ ï½ è¶£å³âãæ ç»éè³,  ã·ã³ã»  /  kaggleæ´ Â 3ã¶â½æ ï½ å¥½ããªç©âãredbullã¨æè¿ã¯ãã¯ã ï½ @0kayu ç 究   è³ç»åã⽤ç¨ãã診æè£å©æ³ã®éçº 2
Deep learningåå¼·ä¼20130208 Presentation Transcript Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase DetectionRichard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, Christopher D. ManningComputer Science Department, Stanford University, Stanford, CA 94305, USA SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA (NIPS 2011) 02/08 2013 D1 å¤§ç¥ æ£
2. â¾èªâ¼°å·±ç´¹ä» lï¬ å¾å± Â èª ä¹ Â (Seiya  Tokui) æ ªå¼ä¼ç¤¾Preferred  Infrastructure,  Jubatus  Pj.  ãªãµã¼ãã£ã¼ lï¬ å°â¾¨éã¯æ©æ¢°å¦ç¿ï¼ä¿®â¼ 士ãç¾è·ï¼ lï¬ â ç³»åï¦ã©ããªã³ã°âããã·ã¥ã»è¿åæ¢ç´¢ï¥ªâ深層å¦ç¿ lï¬ ä»ã®èå³ã¯æ·±å±¤å¦ç¿ã表ç¾å¦ç¿ãåæ£å¦ç¿ãæ å解æ lï¬ @beam2d  (Twitter,  Github,  etc.) 2 /  47 3. 2011å¹´ï¦:  ⾳é³å£°èªè識ã«ãããæå lï¬ lï¬ 3 /  47 DNN-âââHMM  ã使ã£ã⼿ææ³ããâ¾³é³å£°èªè識㮠 word  error  rate  ã§å¾æ¥ æ³ Â (GMM)  ãã  10%  åå¾ãæ¹å æºå¸¯ç«¯æ«ã«ãããâ¾³é³å£°æä½ã«  Deep  Learning  ãå©ï§â½¤ç¨ãããããã« F. Seide, G. Li and D. Yu.
Jubatus : ãªã³ã©ã¤ã³æ©æ¢°å¦ç¿åãåæ£å¦çãã¬ã¼ã ã¯ã¼ã¯Â¶ Jubatusã¯ãåæ£ãããã¼ã¿ããã常ã«ç´ æ©ãããæ·±ãåæããããã¨ãçã£ãåæ£åºç¤æè¡ã§ãã Jubatusã®ååã®ç±æ¥ã¯ãä¿æãªåç©ã§ãããã¼ã¿ã®å¦è¡åããã®å½åã§ããã¦ãã¿ã¹ãã¨èªã¿ã¾ããæ ªå¼ä¼ç¤¾Preferred Networksã¨NTTã½ããã¦ã§ã¢ã¤ããã¼ã·ã§ã³ã»ã³ã¿ãå ±åéçºãããæ¥æ¬çºã®ãªã¼ãã³ã½ã¼ã¹ãããã¯ãã§ãã æçµçã«å ¨ã¦ã®äººã«ã¹ã±ã¼ã©ãã«ãªãªã³ã©ã¤ã³æ©æ¢°å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ãæä¾ãããã¨ãJubatusã®ç®æ¨ã§ãã Jubatus ã¯ä»¥ä¸ã®ç¹å¾´ãæã£ããªã³ã©ã¤ã³æ©æ¢°å¦ç¿åãåæ£å¦çãã¬ã¼ã ã¯ã¼ã¯ã§ãã ãªã³ã©ã¤ã³æ©æ¢°å¦ç¿ã©ã¤ãã©ãª: å¤å¤åé¡ãç·å½¢å帰ãæ¨è¦ï¼è¿åæ¢ç´¢ï¼ãã°ã©ããã¤ãã³ã°ãç°å¸¸æ¤ç¥ãã¯ã©ã¹ã¿ãªã³ã° ç¹å¾´ãã¯ãã«å¤æå¨ (fv_converter): ãã¼ã¿ã®åå¦çã¨ç¹å¾´æ½åº ãã©ã«ã
ããã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥éãã®åå¼·ä¼åç»ã ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãºããã«ããæçãªã·ãªã¼ãºã åç»ãªã¹ãï¼ååï¼ ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第1å@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第1å ãã®1@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第1å ãã®2@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第1å ãã®3@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é第2å@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第2å ãã®1@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第2å ãã®2@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第2å ãã®3@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第2å ãã®4@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第3å ãã®1 @ã¯ã¼
3. ILSVRC 2012 大è¦æ¨¡ç©ä½èªèã®ã³ã³ãã¹ã http://www.image-net.org/challenges/LSVRC/2012/ Classification Localization Team name Error Team name Error 1 Super Vision 0.15315 1 Super Vision 0.335463 2 Super Vision Deep LearningVision 0.16422 2 Super 0.341905 3 ISI 0.26172 3 OXFORD_VGG 0.500342 4 ISI 0.26602 4 OXFORD_VGG 0.50139 5 ISI 0.26646 5 OXFORD_VGG 0.522189 6 ISI 0.26952 6 OXFORD_VGG 0.529482 7 OXFORD_VGG
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}