# Note Guest: Nyohoã§ããæ®éã«Nyoho(ã«ãã»ã)ãªã©ã¨å¼ãã§ãã ãããPythonãå«ãã¦ããã°ã©ãã³ã°è¨èªå¤§å¥½ããæ°å¦å¤§å¥½ãããµã¤ã¨ã³ã¹å¤§å¥½ããªæ¥æããã°ã©ãã§ããTwitter㯠@NeXTSTEP2OSX ã§ãã£ã¦ã¾ããèä½ãç®ãããããã®æ©æ¢°å¦ç¿ããéæå·çä¸ã§ã!åºå³¶ã®ãã¬ãå± åºå³¶ãã¬ãã®ãã¬ãæ´¾ã®ã³ã¼ãã¼ããã¦ãªãã¸ã¼ã»ãã³ã(ã®YouTubeç)ã®ãã¬ã¤ãªã¹ãããã¬ãæ´¾ã»G7åºå³¶ãµãããä¼ç»ããã¦ãªãã¸ã¼ã»ãã³ ã«ãã¬ã¼ã¿ã¼ã§åºæ¼ Contents: 00:00:00 Podcast73åã¹ã¿ã¼ã 00:00:13 ã²ã¹ãNyohoããç´¹ä» 00:02:28 åºå³¶ã¨G7ãµãããã®è©± 00:11:37 Nyohoãããæ±äº¬ã«æ¥ã主ç®çã5æ20æ¥åææ¥ã«ãã£ãScratch Day 2023 in Tokyoã«åå 200人ãããéã¾ã£ãã¿ãã htt
It is our pleasure to announce the public release of stable diffusion following our release for researchers [https://stability.ai/stablediffusion] Over the last few weeks, we all have been overwhelmed by the response and have been working hard to ensure a safe and ethical release, incorporating data from our beta model tests and community for the developers to act on. In cooperation with the tirel
ãã¾å¤§ä¼ä¸ä½ã«ä½ç½®ããDeep Learningç³»ã®å°æ£AIã¯ãè©ä¾¡é¢æ°ã¨ãã¦ç»åèªèãªã©ã§ãã使ããã¦ããResNetãç¨ãã¦ãããResNetã«ã¤ãã¦ã¯æ©æ¢°å¦ç¿ã齧ã£ã¦ãã人ãªãã°èª°ã§ãç¥ã£ã¦ããããæåã ã¨æãã®ã§ã詳ãã説æã¯å²æããã(ã°ã°ãã°è©³ãã説æããããã§ãåºã¦ãã) å²ç¢AIã®ä¸çã§ã¯ããã®ResNetã®ãããã¯æ°ã大ãããã¦ããã®ãä¸ã¤ã®æ½®æµã¨ãã¦ããããããã¯æ°ãå¤ãã¨è¨ããã¨ã¯ããã層ã®æ°ãå¢ã(ããdeepã«ãªã)ã1å±é¢ã®è©ä¾¡ã«ãããæéãè¦ããããã«ãªãã¨ãããã¨ã§ãããããã¨å¼ãæãã«è©ä¾¡ç²¾åº¦ãã¢ããããããããã¼ã¿ã«ã§ã¯å¾ããã¦ãã¦ãæ£åãåä¸ããã¨ããããã§ããã ã¨ããã大ãããããã¯æ°ã«ãªãã°ãªãã»ã©å¦ç¿ã«è¦ããæ師å±é¢ã®æ°ãå¢ãããå¦ç¿ããããã¯æ°ã«å¿ããæéãè¦ããããã«ãªããããããç°¡åã«å¤§ããã¯ã§ããªãããããå²ç¢AIã®æ¹ã¯ãä¸å½ãã³ã»ã³ã
Huge âfoundation modelsâ are turbo-charging AI progress They can have abilities their creators did not foresee The âGood Computerâ which Graphcore, a British chip designer, intends to build over the next few years might seem to be suffering from a ludicrous case of nominal understatement. Its design calls for it to carry out 1019 calculations per second. If your laptop can do 100bn calculations a
深層å¦ç¿ã®ä¸çã§ã¯ææã»ã»ã»ã¨è¨ã£ã¦ããä¸ã¶æã«ä¸åãããã ãã»ã»ã»ä¿¡ããããªããããªãã¨ãèµ·ããã 以åãã²ã¼ã ç»é¢ãè¦ãã ãã§ããã¯ãã³ããããªãªãããåç¾ããAIãåºç¾ããã¨èããã¨ãããåã ããã¨æã£ãã®ã ããã¾ãè¨ãã¦ããã¯ãã³ããªãã¨ãªãã§ããã®ãããããªãã ããããã®æã®ãã®ã¯ãã¾ãã«ãç´æã«åããã®ã§èªåã®æã§ç¢ºãããªãã¨æ¬å½ãã©ããããããªãã ãããªæã®ããã«åã®ä»äºæºã«ã¯7å°ã®GPUãã·ã³ãããããã ãããã¾ãã¾RTXãéãã§ããã®ã§å®è¡ãã¦ã¿ããããåã ããã¨ããè¨ãããããªãçµæãç®ã®å½ããã«ãããã¨ã«ãªã£ãã GTAVãã¨ãã°ã©ã³ã»ãããªã¼ãVãã¯ãèªåè»æ³¥æ£ã«ãªã£ã¦æ¶ç©ºã®è¡ãèµ°ãåãã²ã¼ã ã ã ããã¤ãã²ãããAIã«å¦ç¿ãããã¨ãGTAVãAIãåç¾ããã¨ãããå ¨ãç´æã«åãããã¨ãè¡ããããããã3Dã²ã¼ã ã¨ããã®ã¯ããããä½ã£ãçµé¨ã®ãã人ãªã誰ã§ããæ
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
CVPR 2021, Tutorial on Normalization Techniques in Deep Learning: Methods, Analyses, and Applications Saturday morning (10:00 AM - 13:30 PM EDT), June 19, 2021 Slides and videos are available on this website. Normalization methods can improve the training stability, optimization efficiency and generalization ability of deep neural networks (DNNs), and have become basic components in most state-of-
ã¯ããã«Pose Estimationã¨ã¯ãç»åãåç»ãã人ç©ã®å§¿å¢ï¼é¢ç¯ä½ç½®ï¼ãæ¨å®ããã¿ã¹ã¯ã®ãã¨ã§ããç¹æ®ãªãã¼ã«ã¼ã身ã«çãããããã«ãä¸è¬çãªåç»åã®ã¿ãã人ç©ã®å§¿å¢ãæ¨å®ã§ãããããä¾ãã° ã»ã¹ãã¼ãã«ãããé¸æã®ãã©ã¼ã åæ ã»æ ç»ãã¢ãã¡ã®å¶ä½ã«ãããã¢ã¼ã·ã§ã³ãã£ãã㣠ã»åºèã®ç£è¦ã«ã¡ã©æ åãå ã«ãã人ç©ã®è¡å解æ ãªã©ãæ§ã ãªã¢ããªã±ã¼ã·ã§ã³ãèãããã¾ãã å¾æ¥ã¯ç»åä¸ã®é¢ç¯ä½ç½®ã®XY座æ¨ã®ã¿ãæ¨å®ãã2D Pose Estimationã®ç 究ãå¿ç¨ã主æµã§ããããè¿å¹´ã®Deep Learningãä¸å¿ã¨ããç»åèªèæè¡ã®çºå±ã«ããã奥è¡æ¹åãå«ãã¦3次å çã«äººç©ã®å§¿å¢ãæ¨å®ãã3D Pose Estimationã®ç 究ãæ´»çºåãã¦ãããç¾å®ä¸çã®ããã®åãã»è¡åããããªã¢ã«ã«èªèãããã¨ãå¯è½ã«ãªã£ã¦ãã¦ãã¾ãã æ¬è¨äºã§ã¯ç¹ã«2019å¹´ã®CVPRãICCVãªã©ç»
ä¸ã®åç»ä¸ã®ãã£ã©ã¯ã¿ã¼ã¯ãã¼ãã£ã«YouTuberã¾ãã¯ããã«é¢é£ãããã£ã©ã¯ã¿ã¼ã§ãããã®è¨äºä¸ã®ç»åãæ åã¯å½¼ãã®ãã¡ã³ã¢ã¼ãã»äºæ¬¡åµä½ã§ãã[footnote] ã»ã¨ãã©ã®åç»å ã®ãã¼ãã£ã«YouTuberã¯ãã¡ãããã«ãã¼ã774 inc.ãã®ããããKMNZçã®ä¼æ¥æ§ã«æå±ãã¦ã¾ãããããããæ§ãç¥æ¥½ããæ§ãä¼æ±ã©ã¤ãæ§ãå é ã¾ãæ§ããã¼ã竹è±æ§ããªã¤ãããæ§ãååããªæ§ãã¦ãããå§ã¡ããæ§ãè女ãããæ§ã楪ç©æ³¢æ§ãå¹½ã¶å´æµ·ææ§ãè±é²ãããæ§ãã±ãªã³æ§ããµãããã¹ã¿ã¼æ§ã®ç»åã使ããã¦ããã ãã¾ãããèª ã«ç³ã訳ãããã¾ããããåãæãåç»ãMADãå人ã²ã¼ã çã®äºæ¬¡åµä½ã¨åãããã«ä½¿ç¨è¨±å¯ã¯å ¨ãåã£ã¦ããã¾ããã2019å¹´ã®è¨äºãï¼ã¾ã ä¸ã«åºã¦ããªãï¼å¦è¡è«æã«ããæã¯ä¸é¨ã®ä¼æ¥æ§ã«é£çµ¡ãã¦è¨±å¯ãé ãã¾ãããããã®è¨äºã§ä½¿ç¨ãã許å¯ã¯åã£ã¦ããã¾ããã ç§ã¯ï¼ï¼ï¼ï¼å¹´ã«ä¸æã®ã
ã¯ããã« æè¿ã¤ãã«ãGoogle Meet ã«èæ¯ã¼ããæ©è½ãå©ç¨å¯è½ã«ãªãã¾ãããããæ¥æ¬èªã ã¨ã¤ã³ãã¬ã¹ã®ã±ã¼ã¿ã¤ Watchã®è¨äºãªã©ã§ç´¹ä»ããã¦ã¾ãã確ã 2020 å¹´ 9 ææ«åå¾ã§é 次ãªãªã¼ã¹ããã¦ããã¨è¨æ¶ãã¦ãã¾ãã ãã®ã¨ãã¯ãèæ¯ã¼ãããã®æ©è½ãããªãã£ãã®ã§ãããæè¿ï¼ç§ãæ°ã¥ããã®ã¯ 2020/10/30ï¼æ´ã«ã¢ãããã¼ãããã¾ãããã¢ãããã¼ãã§ãèæ¯å·®ãæ¿ããæ©è½ãä»ãã¦ãã¼ããæ©è½ãã¼ããå¹æãå¼·å¼± 2 ã¤ããé¸ã¹ãããã«ãªãã¾ãããã¾ã æ¥æ¬èªã®ãã¥ã¼ã¹è¨äºã¯è¦ã¦ãªãã§ãããGoogleã«ããã¢ãããã¼ãã®çºè¡¨ã¯ã¡ããã¨ããã¦ãã¾ãã ããã¦ãGoogle AI Blog ã§Background Features in Google Meet, Powered by Web MLã¨ããè¨äºãå ¬éãããå®è£ ã«ã¤ãã¦ã®è§£èª¬ãããã¾ããã ãã®è¨äºã¯ãã®è§£èª¬è¨äºã
Description This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include: DS-GA 1001 Intro to Data Science or a graduate-level
2020/07/02ã«éå¬ãããDLLab主å¬ã®ã¤ãã³ãããèªç¶è¨èªå¦çãã¤ããã®ç¬¬2ã»ãã·ã§ã³ãçæç³»NLPã®ç 究ååãã§ä½¿ç¨ããã¹ã©ã¤ãè³æã§ããRead less
è¬å¸«ï¼å°æ± èª ï¼è¾²å®¶ï¼ æ¦è¦ï¼è¾²æ¥äººå£ã®æ¸å°ãé«é½¢åãé²ãä¸ï¼IoTãAIã¨ãã£ãææ°ã®ITæè¡ãè¾²æ¥ã«åãå ¥ããã¹ãã¼ãè¾²æ¥ã注ç®ããã¦ãã¾ãï¼ æ¬è¬æ¼ã§ã¯ï¼æ·±å±¤å¦ç¿ã使ã£ããã ããé¸å¥ã·ã¹ãã ã®éçºã«ã¤ãã¦ãç´¹ä»ãã¾ãï¼ ã©ã®ããã«ãã¦é¸å¥AIãéçºããã®ãï¼ãªã深層å¦ç¿ã使ãã®ãï¼éçºãéãã¦åãã£ããã¨ãè¦å´ããç¹ãå«ãã¦è§£èª¬ãã¾ãï¼
æ¥æ¬ããããå¦ä¼ ããããå·¥å¦ã»ãã㼠第126å ããããã®ããã®ç»åå¦çæè¡ è¬æ¼è³æ https://www.rsj.or.jp/event/seminar/news/2020/s126.html 2012å¹´ã®ç»åèªèã³ã³ããã£ã·ã§ã³ILSVRCã«ãããAlexNetã®ç»å ´ä»¥éï¼ç»åèªèã«ããã¦ã¯æ·±å±¤å¦ç¿ï¼ãã®ä¸ã§ãç¹ã«ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ (CNN) ãç¨ãããã¨ãããã¡ã¯ãã¹ã¿ã³ãã¼ãã¨ãªã£ãï¼CNNã¯ã¯ã©ã¹åé¡ãã¯ããã¨ãã¦ï¼ç©ä½æ¤åºãã»ã°ã¡ã³ãã¼ã·ã§ã³ãªã©æ§ã ãªã¿ã¹ã¯ã解ãããã®ãã¼ã¹ãããã¯ã¼ã¯ã¨ãã¦åºãå©ç¨ããã¦ãã¦ããï¼æ¬è¬æ¼ã§ã¯ï¼CNNã®çºå±ãæ¯ãè¿ãã¨ã¨ãã«ï¼ã¨ãã¸ããã¤ã¹ã§åä½ãããéã«éè¦ã¨ãªãé«éåçï¼é¢é£ãã深層å¦ç¿æè¡ã®è§£èª¬ãè¡ãï¼ 1. ã¯ã©ã¹åé¡åãã¢ãã«ã«ã¤ã㦠1.1. ILSVRCã¦ãæ¯ãè¿ãé²åã®æ´å² 1.2. ãã®ä»éè¦ãªã¢ãã« 1
社å ã®è¼ªè¬ã§çºè¡¨ããè³æã§ãã Graph Neural Networksã«ã¤ãã¦Spectral Methodã¨Spatial Methodã«ã¤ãã¦ä»£è¡¨çãªææ³ãç°¡åã«ç´¹ä»ããæ´ã«Deep Graph Library (DGL)ãç¨ããå ·ä½çãªå®è£ æ¹æ³ãç´¹ä»ãã¦ãã¾ãã
ã¯ãã㫠深層çæã¢ãã«ãå·¡ãæ ããã¦ãã¾ãã ååã¯Flowã«ã¤ãã¦çè«ã¨å種æ³ã®ç°¡åãªç´¹ä»ããã¾ãã. ä»åã¯ã¾ãå¥ã®æ·±å±¤çæã¢ãã«ã¨ã㦠å¤åèªå·±ç¬¦å·åå¨ (VAE; variational autoencoder) [1] ãç´¹ä»ãã¾ã. VAEã¯GANã«æ¯ã¹ã¦å®å®ããå¦ç¿ãã§ã, Flowã¨ç°ãªãæ½å¨å¤æ°ãä½æ¬¡å ã«è½ã¨ããã¨ãã§ããã®ã§, ãã®æ±ããããã解éæ§ãã好ã¾ãããã¨ãå¤ãããã«æãã¾ã. ä¸æ¹ã§, çæç»åãã¼ãããã¡ã§ãã, 尤度ã®è¨ç®ãã§ããªãã¨ãã£ãæ¬ ç¹ãããã¾ã. ãã®1ã¶æãããVAEã«ã¤ãã¦ããããã¨èª¿ã¹ã¦ã¿ã¾ããã, GANãFlowã®ãããªã¢ãã«ä¹±ç«ç¶æ ã«ã¯ãªã£ã¦ããªãããã ã£ãã®ã§, 主è¦ãªææ³ãå°ã詳ããã«ç´¹ä»ã§ããã°ã¨æãã¾ã. VAEã®åºæ¬ æåã«, æ¬è¨äºãèªãã®ã«å¿ è¦ãªäºé ãã¾ã¨ãã¾ã. å ¨ä½å å¼ã§ã®èª¬æã¯å°ã é·ãã®ã§, å ã«MNISTã®
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}