Welcome to my statistics blog! If you are interested in learning statistics at a deeply intuitive level, youâre at the right place! Please explore! I have organized the topics by statistical area, which you can find in the menu bar at the top. Iâm rapidly adding new statistical content. You can also use the search box in the right-hand menu. Currently, the categories are: Basic statistical concept
The following table shows general guidelines for choosing a statistical analysis. We emphasize that these are general guidelines and should not be construed as hard and fast rules. Usually your data could be analyzed in multiple ways, each of which could yield legitimate answers. The table below covers a number of common analyses and helps you choose among them based on the number of dependent var
ã¡ã³ã¿ã«ãã«ã¹ã®æ å ±ãµã¤ãâã¡ã³ã¿ã«ããâãçç¶ãæ²»çæ¹æ³ãªã©ãå¿ãè³ã®ç æ°ã«é¢ããæ å ±ã詳ãããç´¹ä»ãã¦ãã¾ããå ¨å½ã®ç é¢ã»å°éå»ã®æ¤ç´¢ããç æ°ã®å¯è½æ§ããã§ãã¯ã§ããä¾¿å©æ©è½ãããã²ã試ããã ããï¼
Engineers and business executives are good at solving problems, but they seldom ask if it is the correct problem. Human- and humanity-centered designers are trained to address the core, underlying factors, not just the symptoms. Design must change from being unintentionally destructive to being intentionally constructive Failures? No â Learning Experiences We scientists (and designers) learn from
ï½åå¾ç 究室ãã¼ã ã¸ï½æ¬¡ã¸â ãã³ãã¼ã¬ã¼ã·ã§ããã§å¦ã¶ 楽ããçµ±è¨å¦ ââå¹³åãã忣åæã¾ã§ââ Webç¬ç¿ææããã³ãã¼ã¬ã¼ã·ã§ããã§å¦ã¶æ¥½ããçµ±è¨å¦ãã«ããããï¼ ãã®ææã¯ãå®éã«å¤§å¦ã®ææ¥ã§ä½¿ç¨ãããã®ã§ãããããä¸è¬å ¬éãã¾ãã®ã§ãã©ãããå½¹ç«ã¦ãã ããã ä¸ã®ã¡ãã¥ã¼ã«å¾ã£ã¦ï¼ç« ããï¼ç« ã¾ã§é çªã«å¦ç¿ãã¦ããã¨ãå¹³åãã忣åæã¾ã§ãç¿å¾ãããã¨ãã§ãã¾ãã大å¦ã®åæ¥è«æã¬ãã«ã§ä½¿ãçµ±è¨å¦ã¨ãã¦ããã£ã¨å½¹ç«ã¤ãã¨ã§ãããããªããç¸é¢ï¼ç¸é¢ããå ååæã¾ã§ï¼ã«ã¤ãã¦ã¯ãå§å¦¹ç·¨ã®ãã¢ã¤ã¹ã¯ãªã¼ã å±ããã§å¦ã¶æ¥½ããçµ±è¨å¦ããå ¬éããã¦ãã¾ãã ãããããã°ã£ã¦é²ãã¦ããã¾ãããã ææã¡ãã¥ã¼
ã社ä¼èª¿æ»å·¥æ¿ãªã³ã©ã¤ã³ãã¯ãç²å大妿å¦é¨ç¤¾ä¼å¦ç§ã«ããã社ä¼å¦ã»äººé¡å¦æè²ã®éè¦ãªæ±ã§ããèª¿æ»æè²ããã¨ãããå¦çã®èªå¦èªç¿ã®æ¨é²ããå¦çã«ã¨ã£ã¦ããå®éçã»å®è·µçãªèª¿æ»æè²ã®å±éãå®ç¾ããããã®ã³ã³ãã³ãã§ãã
http://web.sfc.keio.ac.jp/~iba/lecture/2004/sfc-model/ ç§ãã¡ã¯ãµã ãç©äºãçè§£ããã¨ãã«ãé ã®ä¸ã«èªåãªãã®ã¢ãã«ãã¤ãããããããã¨ã«çè§£ãã¦ãã¾ããæ¥å¸¸çæ´»ã ãã§ãªããç§å¦ãåµä½ã®åéã§ããåæ§ã«ã¢ãã«ãéè¦ãªå½¹å²ãæããã¦ãã¾ããã¢ãã«ãã¤ããã«ã¯ã対象ããæ¬è³ªçã«éè¦ã ã¨æãé¨åãæãåºãã¦è¨è¿°ããã®ã§ããããã®ä½æ¥ã®ãã¨ããã¢ããªã³ã°ã(ã¢ãã«å)ã¨ããã¾ããã¢ããªã³ã°ãéãã¦ããã®å¯¾è±¡ã«ã¤ãã¦ã®çè§£ãæ·±ãããã¨ãã§ããã¾ãä»ã®äººã¨ã®ã³ãã¥ãã±ã¼ã·ã§ã³ã«ãå½¹ç«ã¡ã¾ãã ããã¦ãã¢ãã«ã®çè§£ãæ·±ããããã®æ¹æ³ã¨ãã¦ãã·ãã¥ã¬ã¼ã·ã§ã³ãã¨ããæ¹æ³ãããã¾ããã·ãã¥ã¬ã¼ã·ã§ã³ã¨ã¯ãã¢ãã«ã®è¨å®ãå¤ãããã¨ã§ããã®æ¯èããã©ã®ããã«å¤åãããã観å¯ãããã¨ã§ããã·ãã¥ã¬ã¼ã·ã§ã³ãè¡ããã¨ã«ãããè¤éãªã¢ãã«ãå¤§è¦æ¨¡ãªã¢ãã«ã®çè§£ã容
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}