python ã® matplotlib ã§ã°ã©ããæãã®ã¯é常ã«ç°¡åã§ããã¨ãã«ãã°ã©ãã 1 ã¤ã ãã®å ´å㯠import matplotlib.pyplot as plt import numpy as np x = np.linspace(-3, 3, 20) y = x ** 2 plt.plot(x, y) plt.show()
python ã® matplotlib ã§ã°ã©ããæãã®ã¯é常ã«ç°¡åã§ããã¨ãã«ãã°ã©ãã 1 ã¤ã ãã®å ´å㯠import matplotlib.pyplot as plt import numpy as np x = np.linspace(-3, 3, 20) y = x ** 2 plt.plot(x, y) plt.show()
ã¯ããã« ãã¡ãã®è¨äºã®å 容ãï¼æçµµã«ã¾ã¨ãããã®ã«ãªãã¾ãã以ä¸ãæç« ã§å°ãã ãè£è¶³ãã¾ãã æ£è§£çç³»ã®å種ææ¨ã«ã¤ã㦠(åè)ãã¡ãã®è¨äºããå¼ç¨ããã¦é ãã¾ããã ã¯ã©ã¹åé¡ã¢ãã«ã®æ§è½è©ä¾¡ã«ã¯æ§ã ãªè©ä¾¡ææ¨ãåå¨ãã¾ãããä¸è¨ã®å種ææ¨ã®è¨ç®ã§è«¸ã ç®åºããã¾ãã ç¨èªãè¦ããéã«æ··ä¹±ãã¦ãã¾ããã¡ã§ããã以ä¸ã®é¢ä¿æ§ããç解ãã¦ããã°ä¸¸æè¨ããªãã¦ãæãåºãã¾ãã åä¸æå:æ£è§£ãä¸æ£è§£ãã示ã -> T or F å¾ä¸æå:ã¢ãã«ããã®äºæ¸¬åé¡ã示ã -> P or N å½é½æ§ã¯ãFP(ééã£ã¦é½æ§å¤å®ããæ°) / FP + TN(é°æ§å ¨ä½ã®æ¯æ°) çé½æ§ã¯ãTP(æ£ããé½æ§å¤å®ããæ°) / TP + FN(é½æ§å ¨ä½ã®æ¯æ°) ããã¹ãã§ROCæ²ç·ã¨AUCãã¾ã¨ãã â ROCæ²ç·ã£ã¦ãªãã ? ã¯ã©ã¹åé¡ããããã®ã¹ã³ã¢é¾å¤ãå¤é¨ã®å¤æ°ã¨ãã¦å¤åãããå½é½æ§çã横軸ã«ãçé½æ§çã縦
ãã®è¨äºã¯æQiitaã«æ稿ãã¦ããå 容ã«ãªãã¾ãï¼ å è¨äºã®æ¹ã¯è¿ã åé¤ããäºå®ã§ãï¼ å°å ¥ Qiitaã§éå帰ã¨æ¤ç´¢ãããã¦ãæå¤ã¨æ°å¼ã§ã®èª¬æããªãã£ãã®ã§ä»åã¯æ°å¼ã§æ»ãããã¨æãã¾ãï¼ ä¾é¡ã¨ãã¦ï¼The Boston Housing Datasetã使ãã¾ãï¼ https://raw.githubusercontent.com/satopirka/Lasso/master/Boston.csv crim zn indus chas nox rm age dis rad tax ptratio black lstat medv 1
ç°å¢æ§ç¯ããã ããã¦numpyããã¾ã¨ãã«æ±ããªãã®ã¯æ¥ããããã®ã§ãã¯ããã¿ã®Rã«ããå®è¡ä¾ãPythonã«ç§»æ¤ããªããPythonã®ç§å¦è¨ç®ã©ã¤ãã©ãªã«æ £ãã¤ã¤ãæ©æ¢°å¦ç¿ã«ãæ £ãããã¨ããéèã ã¨ãããã第4ç« ããã irisã®ãã¼ã¿ãç¨æ scikit-learnã«ã¯æ§ã ãªå¦ç¿ãã¼ã¿ãç¨æããã¦ãã¦ãã決ã¾ãã®ããã«ãã®ä¸ã«ã¢ã¤ã¡ã®å¦ç¿ãã¼ã¿ãå«ã¾ãã¦ããã from sklearn import datasets iris = datasets.load_iris() print iris.data iris.dataãå¦ç¿ãã¼ã¿ã®æ¬ä½ã iris.feature_namesãããããã®åã®ã©ãã«ã In [28]: iris.feature_names Out[28]: ['sepal length (cm)', 'sepal width (cm)', 'petal lengt
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}