ï¼ï¼ï¼ï¼å¹´ã®ãã¼ãã«çµæ¸å¦è³ãåè³ãããã®åçãç±³æ ç»ããã¥ã¼ãã£ãã«ã»ãã¤ã³ããï¼ï¼ï¼ï¼ï¼å¹´ï¼ã®ã¢ãã«ã¨ãªã£ãç±³å½ã®æ°å¦è ã¸ã§ã³ã»ããã·ã¥ãããï¼ï¼æ¥ãç±³ãã¥ã¼ã¸ã£ã¼ã¸ã¼å·ã§äº¤éäºæ ã§äº¡ããªã£ãã米ABCãã¬ããªã©ãä¼ãããï¼ï¼æ³ã ã£ããä¹ã£ã¦ããã¿ã¯ã·ã¼ããé«ééè·¯ã§ã¬ã¼ãã¬ã¼ã«ã«è¡çªããããããåä¹ãã¦ããï¼ï¼æ³ã®å¦»ã¢ãªã·ã¢ããã亡ããªã£ãã¨ããã ç±³ã¦ã§ã¹ããã¼ã¸ãã¢å·åºèº«ãçµ±å失調çãé·ãæ£ããªããç 究ã§å®ç¸¾ãä¸ãããã²ã¼ã çè«ãã®è«æãè©ä¾¡ããã¦ãã¼ãã«è³ãå ±ååè³ããããã¹ã¦ã®ã²ã¼ã åå è ã®æ¦ç¥ããä»ã®åå è ã®æ¦ç¥ã«å¯¾ãã¦æé©ãªç¶æ ã¯ãããã·ã¥åè¡¡ãã¨å¼ã°ãã¦ãããã¾ãåçã¯ä¼è¨ã¨ãªãããã³ã»ãã¯ã¼ãç£ç£ãã©ãã»ã«ã»ã¯ãã¦ä¸»æ¼ã®æ ç»ã¯ã¢ã«ããã¼è³ã®ä½åè³ãç£ç£è³ãªã©ãå¾ãã ç¾å¨ã主任ç 究å¡ã¨ãã¦ããªã³ã¹ãã³å¤§ã«å¨ç±ãï¼ï¼æ¥ã«ã¯ããã«ã¦ã§ã¼æ¿åºãæ°å¦ã§ã®ç 究å®ç¸¾ãè©ä¾¡ãããã
A Mechanised Proof of GoÌdelâs Incompleteness Theorems using Nominal Isabelle Lawrence C. Paulson Abstract An Isabelle/HOL formalisation of GoÌdelâs two incompleteness theorems is presented. The work follows SÌwierczkowskiâs detailed proof of the theorems using hered- itarily finite (HF) set theory [32]. Avoiding the usual arithmetical encodings of syntax eliminates the necessity to formalise elem
ã¹ãã¼ãã³ã³ @mr_konn Haskell ã«ãããä¾ååããã°ã©ãã³ã°ã§ã¯ã大æµã®å ´åå®å ¨æ§ã®"証æ"ã¨ãã¦ä¾ååãç¨ããå ´åãå¤ããããã²ã¨ãã³è¨¼æãåºæ¥ã¦ãã¾ãã°ããã®è¨¼æã«å¯¾å¿ããå®è¡æè¨ç®ã¯ç¡é§ãªãã ããªããtype erasure ãªã㬠proof erasure ãåºæ¥ãã°ããã®ã ã 2014-02-23 17:10:29 ã¹ãã¼ãã³ã³ @mr_konn 帰ç´æ³ã¯ O(n) æ¸ããããäºé帰ç´æ³ãªã O(n^2) ã ãä¸å示ããã unsafeCoerce ããããããããããªããã©ãããããã®ãèªåçã«ãã£ã¦ãããã®ã欲ãã 2014-02-23 17:12:45
Abstract We generalize the classical definition of zeta-regularization of an infinite product. The extension enjoys the same properties as the classical definition, and yields new infinite products. With this generalization we compute the product over all prime numbers answering a question of Ch. Soulé. The result is 4Ï2. This gives a new analytic proof, companion to Eulerâs classical proof, that
è±å西é¨ãã¼ã»ããï¼Dorsetï¼ã®åéç§ç«æ ¡ã·ã£ã¼ãã¼ã³æ ¡ï¼Sherborne Schoolï¼ã«å¨å¦ä¸ã ã£ã16æ³ã®ã¢ã©ã³ã»ãã¥ã¼ãªã³ã°ï¼Alan Turingã1928å¹´æ®å½±ã2012å¹´6æ22æ¥æä¾ï¼ã(c)AFP/SHERBORNE SCHOOL ã12æ24æ¥ AFPã第2次ä¸ç大æ¦ï¼World War IIï¼ã§ãã¤ãè»ã®æå·è§£èªã«æåããè±éã§ãããªãããåæ§æã®ç½ªã§æ罪å¤æ±ºãåãã41æ³ã§èªæ®ºããæ°å¦è ã¢ã©ã³ã»ãã¥ã¼ãªã³ã°ï¼Alan Turingï¼ã«å¯¾ããè±å¥³çã¯24æ¥ãæ»å¾æ©èµ¦ãä¸ããã ãç¾ä»£è¨ç®æ©ç§å¦ã®ç¶ãã¨ç§°ããããã¥ã¼ãªã³ã°ã¯ç¬¬2次ä¸ç大æ¦ä¸ããã¤ãè»ã®æå·ã·ã¹ãã ãã¨ãã°ãï¼Enigmaï¼ãã®è§£èªã§ä¸å¿çãªå½¹å²ãæãããããã®è§£èªã第2次大æ¦ã®æ©æçµçµã«ã¤ãªãã£ãã¨è©ä¾¡ããæ´å²å®¶ãããã ã ã1952å¹´ãå½æãé大ãªãããã¤è¡çºãã¨ç§°ããã¦ããåæ§æã®ç½ªã§æ罪ã¨ãª
大å¦åé¨åèæ¸ã大å¦ã¸ã®æ°å¦ãã®ãã¼ã ãã¼ã¸ Standard Approach to Advanced Mathematics ç ææ¸é¢ ãã¼ã ãã¼ã¸ 以ä¸ã¸ãæ¡å ãã¾ã â æ°èª²ç¨â ç ææ¸é¢ç´¹ä»ã ãã 大å¦ã¸ã®æ°å¦ã¬ã¤ããããã ãã®ä»ã®æ¸ç±ã ç æãããã°ãããã èè ç´¹ä» ãããããã ãããã 常åæ¸åºä¸è¦§ è³¼å ¥æ¹æ³ ãâãããã注æãï¼ä¸è¨ã®ãªã³ã©ã¤ã³æ¸åºããã御注æã§ãã¾ãï¼ã ããã¯ãµã¼ãã¹ãã ç´ä¼åå±æ¸åºããããã¸ã§ã¤ããã¯ï¼ï¼ªï¼¢ï¼¯ï¼¯ï¼«ï¼ããã ã¸ã¥ã³ã¯å æ¸åºããããä¸çå æ¸åºãããããããã¤ã¬ã¯ãæå±æ¸åºãããããæ¬ãã¿ã¦ã³ããããå®®èæ¸åºãã ææå æ¬åº ãããè¿è¤æ¸åº âãé»è©±æ³¨æãï¼ï¼âï¼ï¼ï¼ï¼âï¼ï¼ï¼ï¼ããï¼ï¼ï¼æãï¼ï¼æåä»ã¦ããã¾ãï¼ âãFAX注æãï¼ï¼âï¼ï¼ï¼ï¼âï¼ï¼ï¼ï¼ããï¼ï¼ï¼æéåä»ã¦ããã¾ãï¼ ï¼ã詳細ã¯ã è³¼å ¥æ¹æ³
é£è¼ã³ã©ã ããçå½ç§å¦ã®ææ¥ã¯ã©ã£ã¡ã ããç®æ¬¡ 第ï¼ï¼åï¼å ¨ã¦ã®æ¤ç©ããã£ããããã®åªãããæãåºã ãããã¹ã³ï¼å·¦ï¼ã¨ãã³ãã«ããéåã®ä¸é¨ï¼å³ï¼ æ¤ç©ã«ããã£ããã£ããããã®éæ³ ãã®ãªã¼ã©å ¨éã®éèããªãã ãç¥ã£ã¦ã¾ããã ãããæè¿ããã¼ããªããã§ã¯ããè¦ãããã«ãªã£ããããã¹ã³ã¨ããã«ãªãã©ã¯ã¼ã®ä»²éã§ããã ä¸èª¬ã«ããã¨ãæªéã®éèã¨ããç¥ã人éã試ãããã«ä½ã£ãéèã¨ãè¨ããã¦ãããããã ãªãã¨è¨ã£ã¦ãåãã®ã¯ããã©ã¯ã¿ã«æ§é ããã¡ããã¡ãã¯ã£ããè¦ãããã¨ã ã¾ãã§ãã³ãã«ããéåã¿ããã ã ããä¼¼ã¦ãã§ãããããã©ã¯ã¿ã«ããããªã«ã¯ã£ããè¦ããæ§é ç©ã¯ãä»ã«ã¯ç¡ãããããªãããªã ãã®æ¤ç©ãé¢ç½ãã®ã¯ãããã ãã§ã¯ç¡ãã å®ã®åºã£å¼µã£ãé¨åãã¤ãªãã¦ããã¨ããããæ§é ããã£ããè¦ãã¦ããã§ãããï¼ ãã®ãããã®æ¬æ°ãæ°ãã¦ã¿ããã å³åãã®ãããã¨å·¦å
ä¸å®å ¨æ§å®çã®Lisp, Mathematicaã«ããè¨è¿° Lisp code / Mathematica notebook ããã°ã©ãã³ã°è¨èªãªãã¦ã©ããåãã¨æã£ã¦ãã人ã¯ä¸ã®3ã¤ãJavaãC++ã§æ¸ãã¦ã¿ã¦ã»ãã ä¸å®å ¨æ§å®çã«ã¤ãã¦ã®ã²ã¼ãã«ã®è¨¼æã®ä¸é¨ åæ¢åé¡ã®è§£æ±ºä¸å¯è½æ§ã«ã¤ãã¦ã®ãã¥ã¼ãªã³ã°ã®è¨¼æ LISPå¼ãã¨ã¬ã¬ã³ãã§ãããã¨ã証æã§ããªãã¨ãããã£ã¤ãã£ã³ã®è¨¼æ ã©ã¤ãããããå½¹ã«ç«ããªããã©ããã¯ã¹ã¯ç¡ããï¼ãã£ã¤ãã£ã³ãç¥ã®éçãï¼ ãã³ã¹ãã¼ãã²ã¼ãã«ã¯Lispãæãã¤ãã¦ããã¹ãã ã£ããããå½¼ãLispãæãã¤ãã¦ãããªãã°å½¼ã®ä¸å®å ¨æ§å®çã®è¨¼æã¯ãã£ã¨ç°¡åãªãã®ã«ãªã£ãã ãããï¼ããã¹ã¿ãã¿ã¼ãã¡ã¿ãã¸ãã¯ã»ã²ã¼ã ãï¼ æ¬¡ã®2åã®æ¬ã¯Lispã¨ãã£ã¦ãSchemeã®ãããªãªãªã¸ãã«è¨èªã使ããã¦ãããããã§ã¯Common Lispã¨Emacs LispãM
ãWindowsãçµäºããããã«ã¯ã¹ã¿ã¼ããã¿ã³ãæ¼ããªããã°ãªããªããçµäºãªã®ã«ã¹ã¿ã¼ãã¨ã¯ããããã«ï¼ãã¨åãããã大ããªèªå·±çç¾ãããªãã¡çµäºããããã ãã«åå¨ãã¦ãã究極ãããã¦æå¾ã®æ©æ¢°ããã·ã£ãã³ã®æçµæ©æ¢°(ã¦ã«ãã£ã¡ã¤ããã·ã³)ãã§ãã ãã®æ©æ¢°ãä½ã£ãã¯ãã¼ãã»ã·ã£ãã³ã¯ã¢ã¡ãªã«ã®é»æ°å·¥å¦è ã«ãã¦æ°å¦è ã§ãããæ å ±çè«ã®ç¶ã¨å¼ã°ããæ å ±ã»éä¿¡ã»æå·ã»ãã¼ã¿å§ç¸®ã»ç¬¦å·åãªã©ã®æ å ±ç¤¾ä¼ã«å¿ é ã®åéã®å é§çç 究ãè¡ããä»æ¥ã®ã³ã³ãã¥ã¼ã¿æè¡ã®åºç¤ãä½ãä¸ãã人ç©ã§ãããããæ å ±ã¯ã0ãã¨ã1ãã«ã³ã¼ãåãããã¨ãã§ããããã«ãã£ã¦ã¢ããã°ããã¸ã¿ã«ã«å¤ãããã¨ãã§ããã¯ãã§ãã³ã³ãã¥ã¼ã¿ã¼ã¯ãã è¨ç®ããã ãã®ãã®ã§ã¯ãªãããã£ã¨éããã¨ãã§ããã®ã ã¨ãããã¨ã示ããå大ãªäººç©ã§ãã ããã¦ãä»ã®ãã½ã³ã³ããããã®åºç¤ãç¯ããä¸äººã§ããã¯ãã¼ãã»ã·ã£ãã³ã«ãã£ã¦èæ¡ãããã®ãã以ä¸
Big fat warning This is just a proof of concept. It barely works. There are missing pieces left and right, which were replaced with hacks so I can get this to run and prove it's possible. Don't try this at home, especially your home. You have been warned. There has been a lot of talking about PyPy not integrating well with the current scientific Python ecosystem, and numpypy (a NumPy reimplementat
æ½è±¡çã«çç±ãè¨ãã°ã å®æ°ï¼è¤ç´ æ°ï¼ã«ã¯ãããã¤ãã®å ¬çãããã¾ãã ãã®ä¸ã®ä¸ã¤ã«å¯æä½ã¨ãã代æ°çæ¦å¿µãèªãã¦ããããã§ãã ããããããããã¾ãã¨ãå®æ°ã®éåRã¯ä»£æ°çã«ã¯å®æ°ä½ã¨ãå¼ã³ãå¯æä½ãªããã§ãã å¯æä½Fã®å®ç¾©ã¯ãFã®ï¼å 以å¤ã®å ã¯å ¨ã¦Fã®ä¸ã«éå ããã¤åä½çå¯æç°Fï¼åä½å ï¼ãå«ãã§ãã¦ãä¹æ³ã«é¢ãã¦äº¤æå¯è½ãªç°Fï¼ãã®ãã¨ã§ãã ç°ã®å®ç¾©ãæ¸ãã¦ããã°ãéåRãç°ã§ããã¨ã¯ã ä»»æã®å a,b,câRã«å¯¾ãã¦ããï¼ãã¨ä¹æ³ãå®ç¾©ããã¦ãã¦ãã¤ã¾ããa+bâR,abâRã§ããã (1)(a+b)+c=a+(b+c) (2)a+b=b+a (3)a+d=d+a=aã¨ãªãdâRããããï¼ãã®dã0ã¨æ¸ããï¼ (4)a+a'=a'+a=0ã¨ãªãa'âRããããï¼ãã®a'ã-aã¨æ¸ããï¼ (5)a(b+c)=ab+bc, (a+b)c=ac+bc (6)a(bc)=(ab)c
A beginners guide to using Python for performance computing A comparison of weave with NumPy, Pyrex, Psyco, Fortran (77 and 90) and C++ for solving Laplace's equation. This article was originally written by Prabhu Ramachandran. laplace.py is the complete Python code discussed below. The source tarball ( perfpy_2.tgz ) contains in addition the Fortran code, the pure C++ code, the Pyrex sources and
ããªãã¢ã®ç¨®é¢¨ãªã¿ã¤ãã«ã«ãã¦ã¿ãï¼ã¿ã¤ãã«ã®çãã¯å¾åã§è¿°ã¹ãï¼ ãã¨ã®çºç«¯ã¯ï¼ã17ã®åæ°ã§ãããã³ãã¼ãã¬ã¼ããè¦ã¤ããããã«ã¯ï¼è»ãä½å°è¦³æ¸¬ããªããã°ãªãããã¨ãããããªéè«ããã£ããï¼ããããæ¥å¸¸çãªç®æ°ãã§ããã¨ãã£ããããªãã¨æã£ãã®ã§ï¼ã¡ãã£ã¨èãã¦ã¿ãï¼ ç¾å¨ã¯å¸æãã³ãã¼ãããããï¼ãã³ãã¼ã®åå¸ã«ã¯åãããããã®ã®ï¼ãã³ãã¼ã¯ä¸æ§åå¸ãã¦ããã¨ä»®å®ããï¼ ããã¨ï¼17ã®åæ°ã¯ãããã1/17ã®ç¢ºçã§è¦ã¤ãããã¨ãã§ããï¼ããã§å観測ã¯ãã«ãã¼ã¤è©¦è¡ã¨æãããã¨ãã§ããããï¼ç¢ºçãçµ±è¨ã®åæ©çãªç¥èã§ãªãã¨ãã§ããããªæ°ãããï¼ ãã¨ãã°ï¼5åç®ã« "åãã¦" 17ã®åæ°ãè¦ã¤ãã確çã¯ï¼4å17ã®åæ°ä»¥å¤ (=16/17) ã®äºè±¡ã観測ãï¼5åç®ã«1/17ã®äºè±¡ã観測ããã¨èãããã¨ãã§ãï¼ ã§æ±ãããã¨ãã§ããï¼ ãã¦ï¼ãããä¸è¬åããã¨ï¼ç¢ºçpã§èµ·ããäºè±¡ãkåç®
æ°å¦ã»ããã¼2011å¹´2æå· ç¹éâã©ã³ãã ãã¹ãæã¾ããæ°å¦ã»ããã¼ 2011å¹´ 02æå· [éèª]åºç社/ã¡ã¼ã«ã¼: æ¥æ¬è©è«ç¤¾çºå£²æ¥: 2011/01/12ã¡ãã£ã¢: éèªè³¼å ¥: 1人 ã¯ãªãã¯: 1åãã®ååãå«ãããã° (2件) ãè¦ããäºã¶æ以ä¸é ãã¦éå ±ã¨ã¯ããå¦ä½ã«ããã©ã³ãã ãã¹ã«é¢ããã©ã³ãã ãªå¹´è¡¨ï¼ãã§ã¤ã¹ã¯ããªãåã£ã¦ã¾ãï¼è¥¿æ¦åºæ¥äº1919ãã©ã³ã»ãã¼ã¼ã¹ãã©ã³ãã æ§ãæ°å¦çã«å®å¼åãããã¨è©¦ã¿ã1920--6Xã©ã³ãã æ§ã®å®å¼åã«è¾¿ãçãã¾ã§ã®å¤æ°ã®æ°å¦è ã«ãã試è¡é¯èª¤ã®æ代1933ã³ã«ã¢ã´ããã«ãã確çè«ã®å ¬çåã©ã³ãã ãã¹èªçã®æ代1960ã½ãã¢ãããç¾å¨ã³ã«ã¢ã´ããè¤éæ§ã¨å¼ã°ããæ¦å¿µãå°å ¥ï¼æ°å¹´å¾ã«ã³ã«ã¢ã´ãããåãæ¦å¿µãç¬ç«ã«çºè¦ï¼1966ãã¼ãã£ã³=ã¬ãã«ããæ§æçã©ã³ãã æ§ã®å®å¼å1970ã½ãã´ã§ã¤ã¯ã©ã³ãã å¼·å¶æ³ãå°å ¥ãï¼ ã®é¨åéåãå ¨ã¦ã«ãã¼
ANALYTIC COMBINATORICS: This book, by Flajolet and Sedgewick, has appeared in January 2009, published by Cambridge University Press. Free download link. 810p.+xiv. Electronic edition of June 26, 2009 (identical to the print version). [Front matter] Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over
ãµã¼ãã¹çµäºã®ãç¥ãã ãã¤ãYahoo! JAPANã®ãµã¼ãã¹ããå©ç¨ããã ãèª ã«ãããã¨ããããã¾ãã ã客æ§ãã¢ã¯ã»ã¹ããããµã¼ãã¹ã¯æ¬æ¥ã¾ã§ã«ãµã¼ãã¹ãçµäºãããã¾ããã ä»å¾ã¨ãYahoo! JAPANã®ãµã¼ãã¹ããæ顧ãã ããã¾ãããããããããé¡ããããã¾ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}