Code Archive Skip to content Google About Google Privacy Terms
ã¯ããã¾ãã¦ãä»å¹´ã®5æã«å ¥ç¤¾ããåé@ããããã¼ã ã§ãã å ¥ç¤¾ãã¦ããã¯ããªããªã大å¤ãªãã¨ãå¤ãã§ãããæè¿ã¯ãé 好ããéã¾ã£ã¦ææãã飲ã¿åã ãåéä¼ããªããã®ãçºè¶³ãã¦ãä»äºé¢ã§ãä»äºä»¥å¤ã®é¢ã§ãå¯åº¦ã®é«ãæ¯æ¥ãéããã¦ãã¾ãï¼ ãã¦ãåã¯ããããããã¼ã æå±ã¨ãããã¨ã§ãæ®æ®µã¯ã¬ã·ãããããããã¦ã¼ã¶ã®æºè¶³åº¦ãä¸ããããã«ã ã¯ãã¯ãããã®æ¤ç´¢ã¾ããã«ã¤ãã¦ããããããªéçºãè¡ã£ã¦ãã¾ãã 䏿¹ã§ãã¦ã¼ã¶ã®ããããæ¬²æ±ãã«ã¤ãã¦æ·±ãç¥ãããã«ãå¤§è¦æ¨¡ãªãã¼ã¿è§£æãè¡ããæ¬²æ±ã®åæãè¡ãæ©ä¼ãå¢ãã¦ãã¾ããã ã¨ããããã¯ãã¯ãããã®ãã°ã¯è¨å¤§ãªæ°ãããã®ã§ãä¸å£ã®ãã¼ã¿è§£æã¨è¨ã£ã¦ãé常ã®ãããå¦çã ã¨éã«åããªãããã 忣å¦çç°å¢ã®å¿ è¦æ§ãé«ã¾ã£ã¦ãã¾ããã ããã§ãã¾ãã¯æè»½ã«è©¦ãã忣å¦çã®çéã¨ãããã¨ã§ãæè¿ã§ã¯Hadoopã使ã£ããã¼ã¿è§£æç°å¢ãæ´åãã¦ãã¾ãã
Running Hadoop on Amazon EC2 Amazon EC2 (Elastic Compute Cloud) is a computing service. One allocates a set of hosts, and runs one's application on them, then, when done, de-allocates the hosts. Billing is hourly per host. Thus EC2 permits one to deploy Hadoop on a cluster without having to own and operate that cluster, but rather renting it on an hourly basis. If you run Hadoop on EC2 you might c
ã¨ãããhttp://codezine.jp/article/detail/2841ãã¾ãã¾ã³ããããã ããªãã§ããã©ãã ec2ã®ã¢ã«ã¦ã³ãæã£ã¦ãã使ãã¾ãã£ã¦ããã¼ãã¨ããåæã§ã é£ã°ããªããèªãã§å®è¡ãããããã¦æ°ã¥ãããã ãã©ã ec2-add-keypair gsg-keypairã¯gsg-keypairã¨ããååæ±ºãæã¡ãªã®ã§ã¡ããã¨ããã¾ãããã EC2_KEYDIR=`dirname "$EC2_PRIVATE_KEY"`ã£ã¦ãªã£ã¦ãã®ã§ããã«id_rsa-gsg-keypairã¨ããååã§ä¿å ./hadoop-ec2 launch-cluster test-cluster 2ã¨ããã¨ã¡ããã¨ç«ã¡ä¸ãã£ã ./hadoop-ec2 login test-clusterã§ãã°ã¤ã³ã ããjava詳ãããªããã§ããããããªãã£ããã ãã© è¨äºã«æ¸ãã¦ãã jar hado
ã¯ããã« ããã«ã¡ã¯ãHadoopé£è¼ 第4åã¯å¤ªç°ããã«ä»£ãã£ã¦å¤§åãæ å½ãã¾ãã ããã¾ã§ã®é£è¼ã§ãHadoopã«ãããã¼ã¿å¦çã®æ¦ç¥ã«ã¤ãã¦ã¯çè§£ããã¦ããã¨æãã¾ããä»åã¯Hadoopãå©ç¨ããã·ã¹ãã ã®å®ä¾ã¨ãããã¨ã§ãããã°åæãè¡ããblogeyeãã·ã¹ãã ã®æ¦ç¥ã¨ããã®ä¸ã§ã®Hadoopå©ç¨æ³ãç´¹ä»ãã¾ãã ã¾ããblogeyeã¯Amazonãæä¾ãã¦ããEC2ï¼ã¬ã³ã¿ã«ãµã¼ãï¼ãS3ï¼ã¹ãã¬ã¼ã¸ï¼ãHadoopã¨çµã¿åããã¦å©ç¨ãã¦ããã®ã§ããã®è¾ºãã®å°å ¥æ¹æ³ã«ã¤ãã¦ãç´¹ä»ãã¾ãã ããã¾ã§ã®é£è¼ HadoopãhBaseã§æ§ç¯ããå¤§è¦æ¨¡åæ£ãã¼ã¿å¦çã·ã¹ãã Hadoopã®ã¤ã³ã¹ãã¼ã«ã¨ãµã³ãã«ããã°ã©ã ã®å®è¡ è¤æ°ãã·ã³ã¸Hadoopãã¤ã³ã¹ãã¼ã«ãã blogeyeã¨ã¯ ãblogeyeãï¼ããã°ã¢ã¤ï¼ã¯æ¥æ¬èªã®ããã°ãã¯ãã¼ã«ããªã¢ã«ã¿ã¤ã ã«åæãã¦ãæµè¡èªã¨æã
ååï¼http://d.hatena.ne.jp/lopnor/20080831/1220183688ï¼ãµã³ãã«ããã°ã©ã ãåããã¨ããã¾ã§è¡ãã¾ãããã©ãä»åã¯ä¾ã®id:naoyaã®hadoop streamingã§ã¢ã¯ã»ã¹è§£æï¼http://d.hatena.ne.jp/naoya/20080513/1210684438ï¼ããã®ããã£ã¦ã¿ã¾ããã¨ããããªãã¨ããã©ãçããã®ã§ã¾ã¨ããæ¸ãã¾ãã *ec2ã®ä½¿ãæ¹ id:rx7ãããã¨ã¦ãä¸å¯§ã«èª¬æããã¦ããè³æï¼http://d.hatena.ne.jp/rx7/20080528/p1ï¼ãããã®ã§ããã¡ããèªãã°å®ç§ã ã¨æãã¾ããåãããã§ec2ã使ããããã«ãªãã¾ããã *hadoop-ec2ã®ä½¿ãæ¹ https://codezine.jp/article/detail/2841ãã¤ã³ãããã¯ã·ã§ã³ãhttp://d.hatena.n
2008/12/01 楽天ã¯11æ29æ¥ãæ±äº¬ã»åå·ã®æ¬ç¤¾ã§éå¬ããæè¡ç³»ã¤ãã³ããæ¥½å¤©ãã¯ããã¸ã¼ã«ã³ãã¡ã¬ã³ã¹2008ãã«ããã¦ãè¿ãå°æ¥ã«å社ã®Eã³ãã¼ã¹ãµã¼ãã¹ã楽天å¸å ´ããæ¯ããè¨ç»ãããRubyãã¼ã¹ã®å¤§è¦æ¨¡åæ£å¦çæè¡ãROMAãï¼ãã¼ãï¼ã¨ãfairyãï¼ãã§ã¢ãªã¼ï¼ã«ã¤ãã¦ããã®æ¦è¦ãæããã«ããã ã¬ã³ã¡ã³ãã¼ã·ã§ã³ã®å¦çèªä½ã¯ã·ã³ã㫠楽天å¸å ´ã§ã¯ç¾å¨ã2600ä¸ç¹ã®ååãåãæ±ãã4200ä¸äººã®ä¼å¡ã«å¯¾ãã¦ãµã¼ãã¹ãæä¾ãã¦ããããã®è¦æ¨¡ã®ä¼å¡æ°ã»ååç¹æ°ã§ã¬ã³ã¡ã³ãã¼ã·ã§ã³ï¼ååã®æ¨è¦ï¼ãè¡ãã®ã¯å®¹æã§ã¯ãªãã â»è¨äºååºæã«æ¥½å¤©å¸å ´ã®ä¼å¡æ°ã4800ä¸äººã¨ãã¦ããã¾ããããããã¯æ¥½å¤©ã°ã«ã¼ãã®ãµã¼ãã¹å©ç¨è å ¨ä½ã®æ°åã§ãããæ¥½å¤©å¸å ´ã®ä¼å¡æ°ã¯æ£ããã¯4200ä¸äººã¨ã®ãã¨ã§ãããè©«ã³ãã¦è¨æ£ãããã¾ãã ã¬ã³ã¡ã³ãã¼ã·ã§ã³ã®ä»çµã¿ã¨ãã¦å社ã¯ãä¸è¬çã§ã·ã³ãã«ãªã¢
ããªãã«ã¨ã£ã¦éè¦ãªãããã¯ãååã®ææ°æ å ±ãå ¥æãã¾ãããææ°ã®æ´å¯ã¨ãã¬ã³ãã«é¢ããææ°æ å ±ãå³åº§ã«åãåãã¾ãããã ç¶ç¶çãªå¦ç¿ã®ããã«ãç¡æã®ãªã½ã¼ã¹ã«æè»½ã«ã¢ã¯ã»ã¹ãã¾ãããããããã¯ããã©ã³ã¹ã¯ãªããä»ãåç»ãããã³ãã¬ã¼ãã³ã°ææã è¨äºãä¿åãã¦ããã¤ã§ãèªããã¨ãã§ãã¾ãè¨äºãããã¯ãã¼ã¯ãã¦ãæºåãã§ããããã¤ã§ãèªãã¾ãã
Thread Base MapReduce 2007-01-09 (Tue) 0:29 Uncategorized 並åè¨ç®ãã¬ã¼ã ã¯ã¼ã¯ãä½ã£ã¦ãã人ãè¦ã¦ããèªåããªããä½ããããªã£ã¦æ¥ãã®ã§ãã¹ã¬ãããã¼ã¹ã§Googleã®MapReduceãçä¼¼ã¦è¦ã¾ããã1ãã·ã³ç¨ã®MapReduceã¨ãã£ãæã§ãããã 以ä¸ã«ã½ã¼ã¹ã³ã¼ããæãã¾ããé©å½ã«ç ®ããªãç¼ããªããã¦ãã ããã ã½ã¼ã¹ã³ã¼ã ã¯ã¼ãã«ã¦ã³ãã以ä¸ã®ãããªã³ã¼ãã§è¨è¿°ã§ãã¾ãã [code] class WordCounter : public Mapper { public: virtual void Map(const MapInput& input) { string text = input.value(); istringstream iss(text); string word; while
View more posts Hereâs a simple version of the MapReduce framework presented in the now-famous Google paper by Dean and Ghemawat. My version of MapReduce is not intended as a usable high-performance framework, but rather as a learning tool. My goal is twofold: first, to learn to write algorithms in distributed/parallel MapReduce style. Second, to see how simply these concepts can be expressed in R
Jeffrey Dean and Sanjay Ghemawat of Google have written a paper about a method of processing large data sets they call MapReduce. Many will be familiar with the functional programming constructs of map and reduce. Map applies a function against each element of a list to get a transformed version of the list. For example, in Python, map(chr, [97,98,99]) transforms a list of three numbers into a l
Dare Obasanjo's weblog "You can buy cars but you can't buy respect in the hood" - Curtis Jackson Navigation for Google Scalability Conference Trip Report: MapReduce, BigTable, and Other Distributed System Abstractions for Handling Large Datasets - Dare Obasanjo's weblog Content Sidebar Footer These are my notes from the keynote session MapReduce, BigTable, and Other Distributed System Abstractions
Welcome to the IBM TechXchange Community Connect and engage to get answers, discuss best practices, and continually learn more about IBM solutions. Become a member Register and get hands-on at a Dev Day event Register to get an exclusive access to the latest IBM tech and the experts who know how to get the most out of it. Register now Registration is Open! IBM TechXchange 2025 Join us October 6-9
A wide variety of companies and organizations use Hadoop for both research and production. Users are encouraged to add themselves to the Hadoop PoweredBy wiki page. 8 Aug 2018: Release 3.1.1 available This is the first stable release of Apache Hadoop 3.1 line. It contains 435 bug fixes, improvements and enhancements since 3.1.0 Users are encouraged to read the overview of major changes since 3.1.0
This article explains MapReduce in enough detail that implementers can apply it to their own requriements. MapReduce is a distributed programming model intended for processing massive amounts of data in large clusters, developed by Jeffrey Dean and Sanjay Ghemawat at Google. What is MapReduce? MapReduce is a distributed programming model intended for processing massive amounts of data in large clu
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã¡ã³ããã³ã¹
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}