2026å¹´1æ6æ¥ ç ç©¶éçº è£½åæ å ± æ©æã¢ã«ããã¤ãã¼ç æ²»çå¤ãã¬ã±ã³ã®ãï¼ã¬ã«ãããï¼ã«ã¤ãã¦ãç®ä¸æ³¨è£½å¤ã«é¢ããçç©è£½å¤ã©ã¤ã»ã³ã¹ç³è«ãä¸å½ã«ããã¦åç 2025å¹´12æ22æ¥ ä¼æ¥æ å ± ã¨ã¼ã¶ã¤æ ªå¼ä¼ç¤¾ 人äºç°å 2025å¹´12æ11æ¥ ä¼æ¥æ å ± ãµã¹ããããªã㣠CDPãããæ°åå¤åããæ°´ã»ãã¥ãªãã£ãåéã§æé«è©ä¾¡Aãªã¹ãã«2å¹´é£ç¶ã§ããã«é¸å® 2025å¹´12æ9æ¥ è£½åæ å ± æ©æã¢ã«ããã¤ãã¼ç æ²»çå¤ãã¬ã±ã³ã®ãï¼ã¬ã«ãããï¼ä¸å½ã«ããã¦åæ¥å¥åº·ä¿éºã®é©æ°çå»è¬åãªã¹ãã«åè¼ 2025å¹´12æ4æ¥ ç ç©¶éçº è£½åæ å ± ãã¬ã±ã³ã®ãã«ããç¶ææ²»çã®ç¶ç¶çã«æ¡å¤§ããè¨åºå¹æã«é¢ããææ°ãã¼ã¿ãCTAD2025ã«ããã¦çºè¡¨ âçºçæ©æã«æ²»çéå§ããã¢ããã¤ãä½å¤ç¾¤ã§ã¯ããã¬ã±ã³ããã«ããé·æã®ç¶ç¶æ²»çã«ãããMCIããä¸ç度ã¢ã«ããã¤ãã¼ç ã¸ã®é²è¡ãæå¤§8.3å¹´éé ãããå¯
Large Language Models (LLMs) are increasingly deployed in agentic systems that interact with an untrusted environment. However, LLM agents are vulnerable to prompt injection attacks when handling untrusted data. In this paper we propose CaMeL, a robust defense that creates a protective system layer around the LLM, securing it even when underlying models are susceptible to attacks. To operate, CaMe
Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity We conduct a randomized controlled trial (RCT) to understand how early-2025 AI tools affect the productivity of experienced open-source developers working on their own repositories. Surprisingly, we find that when developers use AI tools, they take 19% longer than withoutâAI makes them slower. We view this resu
BioCLIP correctly labels this Clitocybe fragrans from the Fungi task. BioCLIP correctly labels this Jasmine leaf (Jasminum) from the Medicinal Leaf task. BioCLIP correctly labels this Rhizosolenia from the Plankton task. BioCLIP performs well on a variety of image sources, like this microscope image. CLIP mislabels this Russula ochroleuca as "the prince" (Agaricus augustus), which isn't even in th
Jiaxin Wen1, Ruiqi Zhong2, Akbir Khan3, Ethan Perez3, Jacob Steinhardt2 Minlie Huang1, Samuel R. Bowman3â434{}^{3~{}4}, He He4, Shi Feng4,5 1Tsinghua University 2Univeristy of California, Berkeley 3Anthropic 4New York University 5George Washington University Abstract Language models (LMs) can produce errors that are hard to detect for humans, especially when the task is complex. RLHF, the most pop
Dexterity Gen: Foundation Controller for Unprecedented Dexterity Zhao-Heng Yin1,2, Changhao Wang2, Luis Pineda2, Francois Hogan2, Krishna Bodduluri2, Akash Sharma2, Patrick Lancaster2, Ishita Prasad2, Mrinal Kalakrishnan2, Jitendra Malik2, Mike Lambeta2, Tingfan Wu2, Pieter Abbeel1, and Mustafa Mukadam2. 1BAIR, Berkeley EECS and 2FAIR at Meta Achieving Unprecedented Dexterity We introduce Dexerity
æ¬è¨äºã®åçãå ¬éããã®ã¯ 2024 å¹´ 9 æ 21 æ¥ã ã£ãã®ã§ããããã®å¾ 9 æ 26 æ¥ã«ãããã¯ã¢ããããè«æãå¤§å¹ ã«å¢ããã¦æ´æ°ãã¾ããã ã¾ããæåã¯ã¿ã¤ãã«ããåæããã°ã©ãã³ã°è«æãããã¨ãã¦ããã®ã§ããããããããæ¥æ¬èªããã°ã©ãã³ã°è¨èªãã®è©±ã«ãè¦ãã¦ãã¾ããã¨ããããããã°ã©ãã³ã°åæè«æãããã«ç½®ãæãã¾ããã æ¥æ¬ã®äººã ããããã°ã©ãã³ã°ãã«ããããããã«ãªã£ãã®ã¯ããã¤ããã§ãããã? ãã®åã«ãã¾ãã¯ä¸çã®ã³ã³ãã¥ã¼ã¿ã¨ããã°ã©ãã³ã°ã®æ´å²ãç°¡åã«æ¯ãè¿ã£ã¦ã¿ã¾ããããã¾ã㯠OS ããæåã©ããããã©ãã¨ã ãããããã Windows 95 ã 1995 å¹´ [1] ãã®åã«åºã使ããã Windows 3.1 㯠1992 å¹´ [2] ãã®ä¸ã§åã MS-DOS ã¯ããã¼ã¸ã§ã³ 6 ã 1993 å¹´ããã¼ã¸ã§ã³ 1 ã 1981 å¹´ [3] Linu
The worldâs climate is a global common good and protecting it requires the cooperative effort of individuals across the globe. Consequently, the âhuman factorâ is critical and renders the behavioural science perspective on climate change indispensable for effective climate action. Despite its importance, limited knowledge exists regarding the willingness of the global population to cooperate and a
ç¹å®ãã¸ã¿ã«ãã©ãããã©ã¼ã ã®éææ§åã³å ¬æ£æ§ã®åä¸ã«é¢ããæ³å¾ã«åºã¥ãç¹å®ãã¸ã¿ã«ãã©ãããã©ã¼ã ã«å¯¾ããçµæ¸ç£æ¥å¤§è£ã«ããè©ä¾¡ï¼æ¡ï¼ã«å¯¾ããæè¦å ¬åã®çµæã«ã¤ã㦠åä»ç· å
Access Options You can be signed in via any or all of the methods shown below at the same time.
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã¡ã³ããã³ã¹
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}