View source on GitHub |
TFX proto module.
Modules
orchestration
module: TFX orchestrator proto imports.
Classes
class ClassifyOutput
: One type of output_type under proto.OutputColumnsSpec
.
class CustomConfig
: Optional specified configuration for ExampleGen components.
class DataSpec
: Indicates which splits of examples should be processed incomponents.BulkInferrer
.
class DistributionValidatorConfig
: Configurations related to Distribution Validator.
class EnvVar
: EnvVar represents an environment variable present in a Container.
class EnvVarSource
: EnvVarSource represents a source for the value of an EnvVar.
class EvalArgs
: Args specific to eval in components.Trainer
.
class ExampleDiffConfig
: Configurations related to Example Diff.
class FeatureComparator
: Per feature configuration in Distribution Validator.
class FeatureSlicingSpec
: Slices corresponding to data set in components.Evaluator
.
class Filesystem
: File system based destination definition.
class Input
: Specification of the input of the ExampleGen components.
class KubernetesConfig
: Kubernetes configuration. We currently only support the use case when infra validator is run by orchestration.KubeflowDagRunner
.
class LocalDockerConfig
: Docker runtime in a local machine. This is useful when you're running pipeline with infra validator component in your your local machine.
class ModelSpec
: Specifies the signature name to run the inference in components.BulkInferrer
.
class Output
: Specification of the output of the ExampleGen components.
class OutputColumnsSpec
: The signature_name should exist in ModelSpec.model_signature_name
.
class OutputExampleSpec
: Defines how the inferrence results map to columns in output example in components.BulkInferrer
.
class PairedExampleSkew
: Configurations related to Example Diff on feature pairing level.
class PodOverrides
: Flattened collections of overridable variables for Pod and its submessages.
class PredictOutput
: One type of output_type under proto.OutputColumnsSpec
.
class PredictOutputCol
: Proto type of output_columns under proto.PredictOutput
.
class PushDestination
: Defines the destination of pusher in components.Pusher
.
class RangeConfig
: RangeConfig is an abstract proto which can be used to describe ranges for different entities in TFX Pipeline.
class RegressOutput
: One type of output_type under proto.OutputColumnsSpec
.
class RequestSpec
: Optional configuration about making requests from examples input in components.InfraValidator
.
class RollingRange
: Describes a rolling range.
class SecretKeySelector
: SecretKeySelector selects a key of a Secret.
class ServingSpec
: Defines an environment of the validating infrastructure in components.InfraValidator
.
class SingleSlicingSpec
: Specifies a single directive for choosing features for slicing.
class SplitConfig
: A config to partition examples into split in proto.Output
of ExampleGen.
class SplitsConfig
: Defines the splits config in components.Transform
.
class StaticRange
: Describes a static window within the specified span numbers [start_span_number, end_span_number]
.
class TensorFlowServing
: TensorFlow Serving docker image (tensorflow/serving) for serving binary.
class TensorFlowServingRequestSpec
: Request spec for building TF Serving requests.
class TrainArgs
: Args specific to training in components.Trainer
.
class TuneArgs
: Args specific to tuning in components.Tuner
.
class ValidationSpec
: Specification for validation criteria and thresholds in components.InfraValidator
.